It is currently 13 Dec 2017, 09:13

Decision(s) Day!:

CHAT Rooms | Ross R1 | Kellogg R1 | Darden R1 | Tepper R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A box contains 10 light bulbs, fewer than half of which are

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Revolution GMAT Instructor
User avatar
P
Joined: 16 Aug 2015
Posts: 4467

Kudos [?]: 3145 [0], given: 0

GPA: 3.82
Premium Member
Re: A box contains 10 light bulbs, fewer than half of which are [#permalink]

Show Tags

New post 13 Dec 2015, 20:22
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.


A box contains 10 light bulbs, fewer than half of which are defective. Two bulbs are to be drawn simultaneously from the box. If n of the bulbs in box are defective, what is the value of n?

(1) The probability that the two bulbs to be drawn will be defective is 1/15.
(2) The probability that one of the bulbs to be drawn will be defective and the other will not be defective is 7/15.


When you modify the original condition and the question, it becomes defective bulbs' number:d and NOT defective bulbs' number:n. Then b+n=10 and there are 1 equation(n+d=10) and 2 variables(n,d), which should match with the number of equation. So you need 1 more equation, which is likely to make D the answer.
In 1), dC2/10C2=d(d-1)/10*9=1/15 -> d(d-1)=6 and d=3, which is unique and therefore sufficient.
In 2), dC1*(10-d)C1/10C2=7/15, d(10-d)/5*9=7/15 -> d(10-d)=21 and d=3,7. At the same time, d<5 and d=3, which is unique and therefore sufficient. So, the answer is D.


-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
“Receive 5 Math Questions & Solutions Daily”
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Kudos [?]: 3145 [0], given: 0

Director
Director
User avatar
Joined: 04 Jun 2016
Posts: 645

Kudos [?]: 389 [0], given: 36

GMAT 1: 750 Q49 V43
A box contains 10 light bulbs, fewer than half of which are [#permalink]

Show Tags

New post 05 Aug 2016, 06:07
udaymathapati wrote:
A box contains 10 light bulbs, fewer than half of which are defective. Two bulbs are to be drawn simultaneously from the box. If n of the bulbs in box are defective, what is the value of n?

(1) The probability that the two bulbs to be drawn will be defective is 1/15.
(2) The probability that one of the bulbs to be drawn will be defective and the other will not be defective is 7/15.


This little beauty should be in the 700 + category
Excellent solutions by Bunuel and fluke
One should be able to understand the answer by Bunuel Method easily.
FLUKE method is also equally elegant and one should follow it if they are finding it hard to understand the concept of symmetry in probability.

Some people are finding it hard to visualize the concept of symmetry in Probability
Here is an easy way to understand symmetry using two dice and their sum.
The minimum sum when two dice are thrown is 2 and maximum sum is 12.
We will see how the chances of getting sum from 2 to 12 are NOT EQUALLY LIKELY and how these chances are symmetrical in nature

1 way to get a sum of 2 = (1,1)
2 way to get a sum of 3 = (1,2)(2,1)
3 way to get a sum of 4 = (1,3) (2,2) (3,1)
4 way to get a sum of 5 = (1,4)(2,3)(3,2)(4,1)
5 way to get a sum of 6 = (1,5)(2,4)(3,3)(4,2)(5,1)
6 way to get a sum of 7 = (1,6)(2,5)(3,4)(4,3)(5,2)(6,1)
5 way to get a sum of 8 = (2,6)(3,5)(4,4)(5,3)(6,2)
4 way to get a sum of 9 = (3,6)(4,5)(5,4)(6,3)
3 way to get a sum of 10 = (4,6)(5,5)(6,4)
2 way to get a sum of 11 = (5,6)(6,11)
1 way to get a sum of 12= (6,6)

As you can see the probability of getting a sum of 6 is much higher (five times higher) when two dice are thrown than of getting a sum of 2 when two dice are thrown.
Now mentally compare it with the probability of getting 6 when only dice is thrown (Probability=1/6) and getting 2 (Probability= 1/6)
This is where symmetry comes into play. IT MAKES SOME EVENTS MORE LIKELY THEN OTHER EVENTS.

Similarly the chances of Getting one good and one bad bulb in this example are symmetrical.
2 Ways to get one good bulb and one bad bulb= (First Good, Second Bad) OR (First Bad, Second Good)
Therefore while dealing with the probability of combination of one good and one bad bulb , we should keep in mind that the the probability is counted twice
Hence
2* Probability (Good Bulb and Bad bulb)= 7/15

Hope this helps !!
_________________

Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly.
FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.

Kudos [?]: 389 [0], given: 36

Manager
Manager
User avatar
B
Joined: 23 Jun 2009
Posts: 199

Kudos [?]: 110 [0], given: 138

Location: Brazil
GMAT 1: 470 Q30 V20
GMAT 2: 620 Q42 V33
GMAT ToolKit User Premium Member
A box contains 10 light bulbs, fewer than half of which are [#permalink]

Show Tags

New post 27 Sep 2016, 06:44
Here is my two cents
Attachments

20160927_114734.jpg
20160927_114734.jpg [ 4.76 MiB | Viewed 314 times ]

Kudos [?]: 110 [0], given: 138

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14872

Kudos [?]: 287 [0], given: 0

Premium Member
Re: A box contains 10 light bulbs, fewer than half of which are [#permalink]

Show Tags

New post 10 Nov 2017, 22:50
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 287 [0], given: 0

Re: A box contains 10 light bulbs, fewer than half of which are   [#permalink] 10 Nov 2017, 22:50

Go to page   Previous    1   2   [ 24 posts ] 

Display posts from previous: Sort by

A box contains 10 light bulbs, fewer than half of which are

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.