GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 01 Jun 2020, 09:18

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

A box contains 4 red chips and 2 blue chips. If two chips are selected

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Senior Manager
Senior Manager
User avatar
Joined: 25 Oct 2008
Posts: 435
Location: Kolkata,India
A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 29 Oct 2009, 01:15
5
14
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

92% (01:27) correct 8% (01:48) wrong based on 364 sessions

HideShow timer Statistics

A box contains 4 red chips and 2 blue chips. If two chips are selected at random without replacement, what is the probability that the chips are different colors?

A. 1/2
B. 8/15
C. 7/12
D. 2/3
E. 7/10

............................................................
My solution:
Got the correct answer by the following method.
(4/6)(2/5)+(2/6)(4/5)= 8/15>>OA

My querie:
Why are we not getting the answer when we do 1-same color??
1-Both red + 1-both blue
(4/6)(3/6)+(2/6)(1/6)
Most Helpful Community Reply
Manager
Manager
avatar
Joined: 08 Oct 2010
Posts: 174
Location: Uzbekistan
Schools: Johnson, Fuqua, Simon, Mendoza
WE 3: 10
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 18 Jan 2011, 09:55
4
7
Total selection ways: 6C2=6!/2!4!=15
Selecting one blue chip out of two: 2C1=2!/1!1!=2
Selecting one red chip out of four: 4C1=4!/1!3!=4
Thus, (2C1*4C1)/6C2=(2*4)/15=8/15
General Discussion
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64117
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 29 Oct 2009, 01:40
3
1
tejal777 wrote:
Guys please tell me where am i going wrong:

A box contains 4 red chips and 2 blue chips. If two chips are selected at random without replacement, what is the probability that the chips are different colors?


............................................................
My solution:
Got the correct answer by the following method.
(4/6)(2/5)+(2/6)(4/5)= 8/15>>OA

My querie:
Why are we not getting the answer when we do 1-same color??
1-Both red + 1-both blue
(4/6)(3/6)+(2/6)(1/6)


First solution is right.

As for the second one: you've made a little mistake you've avoided when solving for the different colors.

We surely can get the answer for same color by exactly the same method:

P(both same color)=4/6*3/5+2/6*1/5

You just forgot that when taking the first chip there are 5 left, so the chances of getting is out of 5, not out of 6.

Hope it's clear.
_________________
Senior Manager
Senior Manager
User avatar
Joined: 25 Oct 2008
Posts: 435
Location: Kolkata,India
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 29 Oct 2009, 02:25
thank you..I'll go jump off the balcony now..!!grumble grumble..Silly silly!!
Board of Directors
User avatar
P
Joined: 17 Jul 2014
Posts: 2432
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
GMAT ToolKit User Reviews Badge
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post Updated on: 14 Oct 2014, 12:29
1
can someone explain if the method used by me is correct?

we have 6 chips, and out of which we have to select 2, hence 6C2=15
we have 4 red chips - 4C1=4
2 blue chips - 2C1=2
then we multiply the combinations 4x2 and get 8
putting all together, we have the probability of selecting one red and one blue - 8/15

Originally posted by mvictor on 14 Oct 2014, 12:23.
Last edited by mvictor on 14 Oct 2014, 12:29, edited 3 times in total.
Board of Directors
User avatar
P
Joined: 17 Jul 2014
Posts: 2432
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
GMAT ToolKit User Reviews Badge
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 14 Oct 2014, 12:39
1
Bunuel, can u pls specify if my method is good to use for solving this problem
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64117
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 14 Oct 2014, 12:56
1
Intern
Intern
avatar
B
Joined: 01 Jan 2016
Posts: 5
Location: India
GMAT 1: 600 Q60 V60
GPA: 4
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 24 Mar 2017, 08:25
Quote:
A box contains 4 red chips and 2 blue chips. If two chips are selected at random without replacement, what is the probability that the chips are different colors?


(Just for my practice) I am considering this problem WITH replacement:

* One (conventional) way to solve is ([4][/6]x[2][/6] + [2][/6]x[4][/6]) = [4][/9];

* BUT, I am struggling hard to solve the same using Combinations:
My approach [4C1 x 2C1][/6^2] demands a multiplication by 2 :( .

Anyone to help? TIA !
IIMA, IIMC School Moderator
User avatar
V
Joined: 04 Sep 2016
Posts: 1428
Location: India
WE: Engineering (Other)
CAT Tests
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 17 Jul 2018, 18:41
1
niks18 pushpitkc chetan2u pikolo2510

What is incorrect in below approach?

Probability = (Favorable outcomes) / (total no of outcomes)

P (red) = 1/4
P (blue) = 1/2
Combined probability = P(r)* P(b) = 1/8
_________________
It's the journey that brings us happiness not the destination.

Feeling stressed, you are not alone!!
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 8625
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 17 Jul 2018, 18:59
adkikani wrote:
niks18 pushpitkc chetan2u pikolo2510

What is incorrect in below approach?

Probability = (Favorable outcomes) / (total no of outcomes)

P (red) = 1/4
P (blue) = 1/2
Combined probability = P(r)* P(b) = 1/8


P(r) is 4/6... Since 4 reds are there so favourable outcomes and 6 total outcomes..
Since it is without replacement, only 5 are left, so total outcomes =7 and blue are 2 so P(b)=2/5

If blue first then 2/6 and red 4/5
_________________
Intern
Intern
avatar
Joined: 07 Jan 2019
Posts: 1
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 07 Jan 2019, 08:26
Question...

Why is (4/6)(2/5) + (2/6)(4/5) correct answer?

The way I am interpreting this question is that whatever you draw on the first attempt does not matter.

If you get RED chip on the first draw, you just need to draw blue chip on the second draw, which is probability of 2/5.
If you get BLUE chip on the 1st draw, you just need to draw red chip on the 2nd draw, which is probability of 4/5.

Because what you draw on your 1st pick doesn't matter, wouldn't we just add (2/5) + (4/5)?

Please help!!
Senior Manager
Senior Manager
User avatar
D
Joined: 15 Feb 2018
Posts: 453
CAT Tests
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 18 Jan 2019, 00:51
ylee6262
I find the direct approach confusing. Do it the other way and work out how to have all the same colour

Chance all red 4/6·3/5=2/5=6/15
Chance all blue 2/6·1/5=1/15

15/15-6/15-1/15=8/15
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 11 Sep 2015
Posts: 4881
Location: Canada
GMAT 1: 770 Q49 V46
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 05 Feb 2020, 06:54
1
Top Contributor
tejal777 wrote:
A box contains 4 red chips and 2 blue chips. If two chips are selected at random without replacement, what is the probability that the chips are different colors?

A. 1/2
B. 8/15
C. 7/12
D. 2/3
E. 7/10


P(different colors) = P(1st chip is red and 2nd chip is blue OR 1st chip is blue and 2nd chip is red)
= P(1st chip is red and 2nd chip is blue) + P(1st chip is blue and 2nd chip is red)
= P(1st chip is red) x P(2nd chip is blue) + P(1st chip is blue) x P(2nd chip is red)
= 4/6 x 2/5 + 2/6 x 4/5
= 8/30 + 8/30
= 16/30
= 8/15

Answer: B

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Image
Target Test Prep Representative
User avatar
V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 10637
Location: United States (CA)
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 13 Feb 2020, 05:27
tejal777 wrote:
A box contains 4 red chips and 2 blue chips. If two chips are selected at random without replacement, what is the probability that the chips are different colors?

A. 1/2
B. 8/15
C. 7/12
D. 2/3
E. 7/10

............................................................
My solution:
Got the correct answer by the following method.
(4/6)(2/5)+(2/6)(4/5)= 8/15>>OA

My querie:
Why are we not getting the answer when we do 1-same color??
1-Both red + 1-both blue
(4/6)(3/6)+(2/6)(1/6)


To satisfy the requirement, we must obtain either R-B or B-R. Thus, we need to determine:

P(red) x P(blue) + P(blue) x R(red)

4/6 x 2/5 + 2/6 x 4/5 = 2/3 x 2/5 + 1/3 x 4/5 = 4/15 + 4/15 = 8/15.

Answer: B


_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
202 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern
Intern
avatar
Joined: 17 Feb 2020
Posts: 6
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected  [#permalink]

Show Tags

New post 17 Feb 2020, 22:20
P(red) x P(blue) + P(blue) x R(red)

4/6 x 2/5 + 2/6 x 4/5 = 2/3 x 2/5 + 1/3 x 4/5 = 4/15 + 4/15 = 8/15.
GMAT Club Bot
Re: A box contains 4 red chips and 2 blue chips. If two chips are selected   [#permalink] 17 Feb 2020, 22:20

A box contains 4 red chips and 2 blue chips. If two chips are selected

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne