Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 28 May 2017, 22:02

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# A certain company assigns employees to offices in such a way

Author Message
Manager
Joined: 23 Mar 2008
Posts: 218
Followers: 3

Kudos [?]: 156 [0], given: 0

A certain company assigns employees to offices in such a way [#permalink]

### Show Tags

17 May 2008, 02:51
This topic is locked. If you want to discuss this question please re-post it in the respective forum.

A certain company assigns employees to offices in such a way that some of the offices can be empty and more than one employee can be assigned to an office. In how many ways can the company assign 3 employees to 2 fidderent offices?

a) 5
b) 6
c) 7
d) 8
e) 9
Intern
Joined: 15 Apr 2008
Posts: 16
Followers: 0

Kudos [?]: 1 [0], given: 0

### Show Tags

17 May 2008, 04:29
My answer would be D ie 8
The possible arrangements for the two offices could be..
3,0 - 1 way
1,2 - 3 ways
2,1 - 3 ways
0,3 - 1 way
So total 8 ways
Manager
Joined: 23 Mar 2008
Posts: 218
Followers: 3

Kudos [?]: 156 [0], given: 0

### Show Tags

17 May 2008, 10:57
OA is D

Could you please explain how you caoculate ways, for eample why for 1,2 - 3 ways and for 3,0 - 1 way?
Intern
Joined: 15 Apr 2008
Posts: 16
Followers: 0

Kudos [?]: 1 [0], given: 0

### Show Tags

17 May 2008, 18:48
For 1,2 - 3 ways let's say the people are m1,m2 and m3 so the arrangements could be
m1,m2 + m3
m2,m1 + m3
m3,m1 + m2
similar for 2,1

And for 3,0
only one arrangement is possible
m1+m2+m3,none
and similar for 0,3
hope it helps..let me know if doesn't
Manager
Joined: 23 Mar 2008
Posts: 218
Followers: 3

Kudos [?]: 156 [0], given: 0

### Show Tags

18 May 2008, 00:05
Why can't it be for 1,2?

m1,m2 +m3
m2,m1 + m3
m3,m1+m2
m3,m2+m1
m1,m3+m2
m2,m3+m1
Intern
Joined: 15 Apr 2008
Posts: 16
Followers: 0

Kudos [?]: 1 [0], given: 0

### Show Tags

18 May 2008, 20:44
It's not specified in the question that in a single office also..there are different arrangements possible....so
for eg..
m1,m2+m3 and
m1,m3+m2 are treated as same here.
Intern
Joined: 14 May 2008
Posts: 38
Followers: 1

Kudos [?]: 27 [0], given: 0

### Show Tags

18 May 2008, 22:46
alternatively ->

m1 can be assigned office in 2 ways
m2 can be assigned office in 2 ways
m3 can be assigned office in 2 ways

hence total ways of assigning them to offices = 2x2x2=8 ways
Re: combinatorics/ employees   [#permalink] 18 May 2008, 22:46
Display posts from previous: Sort by