Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The OG16 started the explanation for this question by saying this: "Let the numbers be x, y, and z so that x ≤ y ≤ z...." but the question stem said that: "A certain list consists of 3 different numbers..."

From my understanding, it should be the case that : x # y # z and x < y < z

Is the explanation for this question wrong or my reasoning is wrong?

P/S: This question is from OG16 DS Q135
_________________

Never give up on something that you can't go a day without thinking about.

Let's assume three numbers {a, b, c} arranged in ascending order. In this case b will be the median.

Statement-II St-II tells that the sum of these three number is equal to 3 times one of the numbers. Let's take all the possible cases:

1. a + b + c = 3a i.e. 2a = b + c. However we know that a > b and a > c, therefore 2a > b + c. Thus we can reject this case.

2. a + b + c = 3c i.e. 2c = a + b. However we know that c < a and c < b, therefore 2c < a + b. Thus we can reject this case too.

3. a + b + c = 3b i.e. 2b = a + c. We know that b < a but b > c, thus this is the only possible case.

Solving this would give us b = (a + c)/2 i.e. b is the mean of a & c. Since the only other number in the set is b, we can say that b is the mean of the set {a, b, c}. As b is also the median of this set we can definitely say that mean of the set = median of the set.

Hence st-II is sufficient to answer the question.

Statement-I Also adding the explanation for St-I here: St-I tells us that the range of 3 numbers is twice the difference between the greatest number and the median.

For the set {a, b, c} arranged in ascending order, range would be the difference between the greatest and the smallest number i.e. st-I tells us that a - c = 2(a -b) i.e. b = (a + c)/2 which again tells us that b is the mean of the numbers a & c. Since the only other number in the set is b, we can say that b is the mean of the set {a, b, c}. As b is also the median of this set we can definitely say that mean of the set = median of the set.

Hence st-I is sufficient to answer the question.

Hope this helps

Regards Harsh

i tried this way:

let a b c are three numbers. it is asked: (a+b+c)/3 =b?

stamnt. 1: range = 2(c-b) i.e c-a = 2(c-b) 2b-a=c now put the value of c in LHS of question stem (a+b+2b-a)/3 =b hence,, yes, average is equal to median.

stmnt two is possible only when the number are in AP. therefore Average=Median

A certain list consists of 3 different numbers. Does the med [#permalink]

Show Tags

13 Nov 2016, 02:33

Bunuel wrote:

A certain list consists of 3 different numbers. Does the median of the 3 numbers equal the average (arithmetic mean) of the 3 numbers?

Say the three numbers are x, y, and x, where x < y < z. The median would be y and the average would be (x + y + z)/3. So, the question asks whether y = (x + y + z)/3, or whether 2y = x + z.

(1) The range of the 3 numbers is equal to twice the difference between the greatest number and the median --> the range is the difference between the largest and the smallest numbers of the set, so in our case z - x. We are given that z - x = 2(z - y) --> 2y = x + z. Sufficient.

(2) The sum of the 3 numbers is equal to 3 times one of the numbers --> the sum cannot be 3 times smallest numbers or 3 times largest number, thus x + y + z = 3y --> x + z = 2y. Sufficient.

If Statement 1 ended up being say, 2y = 2x + z (instead of 2y=x+z), would the statement still be sufficient? In other words, when matching equations from the statements with the equation in the question, is it sufficient if you can get ONE single equation (even if it doesn't match), or is it only sufficient if the resulting equation from the statement matches the equation in the question exactly?

A certain list consists of 3 different numbers. Does the median of the 3 numbers equal the average (arithmetic mean) of the 3 numbers?

Say the three numbers are x, y, and x, where x < y < z. The median would be y and the average would be (x + y + z)/3. So, the question asks whether y = (x + y + z)/3, or whether 2y = x + z.

(1) The range of the 3 numbers is equal to twice the difference between the greatest number and the median --> the range is the difference between the largest and the smallest numbers of the set, so in our case z - x. We are given that z - x = 2(z - y) --> 2y = x + z. Sufficient.

(2) The sum of the 3 numbers is equal to 3 times one of the numbers --> the sum cannot be 3 times smallest numbers or 3 times largest number, thus x + y + z = 3y --> x + z = 2y. Sufficient.

If Statement 1 ended up being say, 2y = 2x + z (instead of 2y=x+z), would the statement still be sufficient? In other words, when matching equations from the statements with the equation in the question, is it sufficient if you can get ONE single equation (even if it doesn't match), or is it only sufficient if the resulting equation from the statement matches the equation in the question exactly?

In this case the statement would not be sufficient because 2y = 2x + z and 2y = x + z and x < y<z can simultaneously be correct.
_________________

Re: A certain list consists of 3 different numbers. Does the med [#permalink]

Show Tags

10 Dec 2016, 09:31

Hi all,

I think that the approach that official guide offers seems to be too time consuming. While going through this question I simply used substitution approach. First, the basic condition is that mean should be equal to median, so the number set must be evenly spaced. (1) Let's take x=10,y=12,z=14 - evenly spaced set, then 14-10=2(14-12) 4=4 SUFFICIENT (2) 10+12+14=3(12) 36=36 As long as it tells that "the sum of the 3 numbers is equal to 3 times one of the numbers" it doesn't say the the sum should be equal to 3 times of each of the number, therefore it is SUFFICIENT

Asking GMAT geeks, please advise if subject approach is eligible in terms of this particular question???

A certain list consists of 3 different numbers. Does the med [#permalink]

Show Tags

16 Apr 2017, 00:07

Bunuel wrote:

HBSdetermined wrote:

Bunuel plz help in the second statement how is that sufficient most of the explanations above are cryptic!

A certain list consists of 3 different numbers. Does the median of the 3 numbers equal the average (arithmetic mean) of the 3 numbers?

Say the three numbers are x, y, and x, where x < y < z. The median would be y and the average would be (x + y + z)/3. So, the question asks whether y = (x + y + z)/3, or whether 2y = x + z.

(1) The range of the 3 numbers is equal to twice the difference between the greatest number and the median --> the range is the difference between the largest and the smallest numbers of the set, so in our case z - x. We are given that z - x = 2(z - y) --> 2y = x + z. Sufficient.

(2) The sum of the 3 numbers is equal to 3 times one of the numbers --> the sum cannot be 3 times smallest numbers or 3 times largest number, thus x + y + z = 3y --> x + z = 2y. Sufficient.

Answer: D.

Hope it's clear.

men you're brilliant

I solved it by testing.

I just chose one number and then tried to fulfil our constraints with the other two numbers, then realised that the median equaled the average.

Re: A certain list consists of 3 different numbers. Does the med [#permalink]

Show Tags

17 Aug 2017, 03:20

1) let the 3 numbers be a,b,c for first case let us take in increasing order c-a = 2( c-b) c-a = 2c-2b c= 2b-a

mean of abc is (a+b+c)/3 a+b+2b-a /3 3b/3 b

sufficient. A or D can be answer..

2) let 3 numbers be a,b,c not necessarily in increasing order

a+b+c = 3a. b+c =2a. now let us say a=2 b+c =2 in this case the 2 number can be 1,1 and the set will become 1,1,1 so the median will be 1. and avg of 1+1+1 / 3 = 1, in same case assume a=2 and b =0 and c=4 to satisfy equation then here we have numbers in increasing order as 0,2,4 here median is 2 and avg of 3 numbers is 0+2+4 / 3 = 6/3 = 2. same as median.

this process is valid for whether it is 3 times b or 3 times c .

therefore both are sufficent

D is the answer _________________

Give Kudos for correct answer and/or if you like the solution.