Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 37144
Followers: 7274

Kudos [?]: 96811 [0], given: 10786

A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 30 Jul 2012, 01:20 Expert's post 8 This post was BOOKMARKED 00:00 Difficulty: 5% (low) Question Stats: 83% (02:10) correct 17% (01:13) wrong based on 1051 sessions ### HideShow timer Statistics A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped. (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped.

Practice Questions
Question: 9
Page: 275
Difficulty: 650
[Reveal] Spoiler: OA

_________________
Senior Manager
Joined: 29 Oct 2013
Posts: 297
Concentration: Finance
GMAT 1: 750 Q V46
GPA: 3.7
WE: Corporate Finance (Retail Banking)
Followers: 14

Kudos [?]: 389 [4] , given: 197

### Show Tags

30 Jul 2012, 01:21
2
KUDOS
Expert's post
1
This post was
BOOKMARKED
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and$18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers.
Question: $$x=?$$

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$. (1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient. Answer: C. _________________ Math Expert Joined: 02 Sep 2009 Posts: 37144 Followers: 7274 Kudos [?]: 96811 [2] , given: 10786 Re: A citrus fruit grower receives$15 for each crate of oranges [#permalink]

### Show Tags

16 Nov 2013, 13:35
2
KUDOS
Expert's post
indiheats wrote:
Bunuel wrote:
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and$18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers.
Question: $$x=?$$

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$. (1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient. Answer: C. Hi Banuel, I get hung up on when i create the equation 15x + 18y = 38700.... When I see a equation like this, should i automatically assume that mutiple combinations of x and y are possible to satisfy the equation or are there instances where I should actually work out the math.... I spend a lot of time contemplating this, although I see the obvious answer in C of two liner equations... thoughts? Thanks Generally such kind of linear equations (ax+by=c) have infinitely many solutions for x and y, and we cannot get single numerical values for the variables. But since x and y here represent the # of oranges and the # of grapefruits, then they must be non-negative integers and in this case 15x + 18y = 38700 is no longer simple linear equation, it's Diophantine equation (equations whose solutions must be integers only) and for such kind on equations there might be only one combination of x and y possible to satisfy it. When you encounter such kind of problems you must always check by trial and error whether it's the case. In my post above there links to several such problems. _________________ Intern Joined: 15 Sep 2015 Posts: 8 Followers: 0 Kudos [?]: 4 [2] , given: 3 Re: A citrus fruit grower receives$15 for each crate of oranges [#permalink]

### Show Tags

05 Oct 2015, 06:20
2
KUDOS
indiheats wrote:

Hi Banuel,

I get hung up on when i create the equation 15x + 18y = 38700.... When I see a equation like this, should i automatically assume that mutiple combinations of x and y are possible to satisfy the equation or are there instances where I should actually work out the math.... I spend a lot of time contemplating this, although I see the obvious answer in C of two liner equations...

thoughts?

Thanks

Your thought process should be how can we make these numbers more manageable. 15 and 18 both share 3 as a factor, but 38700 looks pretty gnarly. A quick check confirms that 3 is a factor, 3+8+7=18, which is divisible by 3

Now we have the equation in something easier to work with 5x + 6y = 12,900.

It still looks pretty daunting. So here's my thought process, what two values when added give us 12,900, in other words, we're asking what gives us 12,000 + 900

So that equation now becomes, 5x+6y = 12,000 + 900
Can we get an x such that we get 12,000 or 900. Yes.
Can we get a y such that we can get 12,000 or 900. Yes. 120 is divisible by 6, and 90 is divisible by 6.

What does that mean for us?
Well, we can have a case x=2,400 and G = 150
5*2400 + 6*150 = 12,900

OR
We can have a case where x=180 and G= 2000

5*180 + 6*2000 = 12,900

You don't have to actually do the arithmetic. Just do a quick sense check, can we have multiple values for x and y, such that we can get 12000 + 900. Use divisibility rules, if x can give us either 900 or 12000 when multiplied by 5, both are divisible by 5, and if Y can give us either 12000 or 900 when multiplied by 6. Both are divisible by 6. So we can get different values for x and y, and still satisfy 12,900.

Hope that helped someone, I know this post is a bit dated.
Intern
Joined: 15 Sep 2015
Posts: 8
Followers: 0

Kudos [?]: 4 [1] , given: 3

### Show Tags

30 Jul 2012, 19:51
A. 15(2x + 20) + 18x = ???

Insufficient

B. 15x + 18y = 38700

2 variables one equation. Insufficient

Combine them both. Sufficient.
[Reveal] Spoiler:
C
Manager
Joined: 28 Feb 2012
Posts: 115
GPA: 3.9
WE: Marketing (Other)
Followers: 0

Kudos [?]: 43 [0], given: 17

### Show Tags

01 Aug 2012, 02:35
ziko wrote:
First what comes to my mind is that it is C, so combining two statements we can figure out:
let say oranges - x and grapefruit -y, combining two statements we have (2y+20)*15+18*20=3870, y=800 and x=1620

Bunuel can you please clarify: How do we know that 800 and 1620 is not the only combination? if it is the only compbination possible then the answer should be B, but how to calculate from the statement 2 alone that there is only one possible solution. I have tried to pick numbers but after few attempts, looking at the watch i said it should be C (just a good feel).

if one costs 15 dollars and the other costs 18 dollars
you said one solution is 800 and 1620
then at least you know that 18 crates of orange cost the same price (18*15) than 15 crates of grapefruit (15*18).
So for instance
818 (800+18) and 1605 (1620-15) must be another solution. And there are many others
Math Expert
Joined: 02 Sep 2009
Posts: 37144
Followers: 7274

Kudos [?]: 96811 [0], given: 10786

Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 03 Aug 2012, 05:00 Expert's post 1 This post was BOOKMARKED SOLUTION A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers. Question: $$x=?$$ (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$ (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$.

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient.

_________________
Manager
Joined: 14 Nov 2011
Posts: 149
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)
Followers: 0

Kudos [?]: 17 [0], given: 103

Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 20 Apr 2013, 01:25 Bunuel wrote: SOLUTION A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers. Question: $$x=?$$ (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$ (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$.

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient.

Hi Bunnel,

I marked this one as B, as i thought that by prime factorization we can get the number of multiples of 15 and 18.
However i later did the prime factorization and now know that their is no way of knowing how many times 15 or 18 goes in to 38,700.

I remembered this technique as I had used it in Problem Solving, so want to know whether this technique can be used in DS questions.
Math Expert
Joined: 02 Sep 2009
Posts: 37144
Followers: 7274

Kudos [?]: 96811 [0], given: 10786

Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 20 Apr 2013, 04:20 cumulonimbus wrote: Bunuel wrote: SOLUTION A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers. Question: $$x=?$$ (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$ (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$.

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient.

Hi Bunnel,

I marked this one as B, as i thought that by prime factorization we can get the number of multiples of 15 and 18.
However i later did the prime factorization and now know that their is no way of knowing how many times 15 or 18 goes in to 38,700.

I remembered this technique as I had used it in Problem Solving, so want to know whether this technique can be used in DS questions.

What technique are you talking about? Can you please also give PS question for which you've used it?
_________________
Intern
Joined: 09 Sep 2013
Posts: 19
Followers: 1

Kudos [?]: 1 [0], given: 7

Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 13 Oct 2013, 13:55 Bunuel wrote: cumulonimbus wrote: Bunuel wrote: SOLUTION A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers. Question: $$x=?$$ (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$ (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$.

(1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient.

Hi Bunnel,

I marked this one as B, as i thought that by prime factorization we can get the number of multiples of 15 and 18.
However i later did the prime factorization and now know that their is no way of knowing how many times 15 or 18 goes in to 38,700.

I remembered this technique as I had used it in Problem Solving, so want to know whether this technique can be used in DS questions.

What technique are you talking about? Can you please also give PS question for which you've used it?

I did the same thing and marked B. How can we tell quickly that there are multiple answers for 5x + 6y = 12900?
Math Expert
Joined: 02 Sep 2009
Posts: 37144
Followers: 7274

Kudos [?]: 96811 [0], given: 10786

### Show Tags

16 Nov 2013, 13:29
Bunuel wrote:
SOLUTION

A citrus fruit grower receives $15 for each crate of oranges shipped and$18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

Let $$x$$ be the # of oranges and $$y$$ the # of grapefruits. Note that, both $$x$$ and $$y$$ must be integers.
Question: $$x=?$$

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped --> $$x=2y+20$$. Not sufficient to calculate $$x$$

(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped --> $$15x+18y=38700$$ --> $$5x+6y=12900$$. Multiple values are possible, for istance: $$x=180$$ and $$y=2000$$ OR $$x=60$$ and $$y=2100$$. (1)+(2) We have two distinct linear equation with two unknowns, hence we can solve for $$x$$ and $$y$$. Sufficient. Answer: C. Hi Banuel, I get hung up on when i create the equation 15x + 18y = 38700.... When I see a equation like this, should i automatically assume that mutiple combinations of x and y are possible to satisfy the equation or are there instances where I should actually work out the math.... I spend a lot of time contemplating this, although I see the obvious answer in C of two liner equations... thoughts? Thanks Manager Joined: 12 Jan 2013 Posts: 244 Followers: 4 Kudos [?]: 71 [0], given: 47 Re: A citrus fruit grower receives$15 for each crate of oranges [#permalink]

### Show Tags

10 Jan 2014, 06:49
Bunuel wrote:
A citrus fruit grower receives $15 for each crate of oranges shipped and$18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week?

(1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped.
(2) Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped. Practice Questions Question: 9 Page: 275 Difficulty: 650 We are given this equation: 15*O + 18*6 = Total Revenue, so we have 3 variables. Statement 1 solves one of our variables, but it's insufficient because we have 2 more. Statement 2 solves another of our variables, but still on itself it's insufficient. But if we combine the two statements, we have one equation and one variable, so we can solve for the last variable. The answer is C. GMAT Club Legend Joined: 09 Sep 2013 Posts: 13994 Followers: 592 Kudos [?]: 168 [0], given: 0 Re: A citrus fruit grower receives$15 for each crate of oranges [#permalink]

### Show Tags

10 Feb 2015, 10:25
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 2812
GPA: 3.82
Followers: 193

Kudos [?]: 1597 [0], given: 0

Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 26 Nov 2015, 06:49 Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution. A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped. (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped.

We get a "2by2" table as below:
Attachment:

GCDS Bunuel A citrus fruit grower receives (20151125).jpg [ 24.76 KiB | Viewed 3316 times ]

There are 2 variables (a,b) and 2 equations are given by the 2 conditions, so there is high chance (C) will be the answer.
If we look at the conditions together,

from a=2b+20, 15a+18b=38,700, we can get the values of a and b, so this is sufficient, and the answer becomes (C).

For cases where we need 2 more equations, such as original conditions with “2 variables”, or “3 variables and 1 equation”, or “4 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 70% chance that C is the answer, while E has 25% chance. These two are the majority. In case of common mistake type 3,4, the answer may be from A, B or D but there is only 5% chance. Since C is most likely to be the answer using 1) and 2) separately according to DS definition (It saves us time). Obviously there may be cases where the answer is A, B, D or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
“Receive 5 Math Questions & Solutions Daily”
Unlimited Access to over 120 free video lessons - try it yourself

Director
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 595
Followers: 24

Kudos [?]: 256 [0], given: 2

Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] ### Show Tags 22 Jul 2016, 11:16 Bunuel wrote: A citrus fruit grower receives$15 for each crate of oranges shipped and $18 for each crate of grapefruit shipped. How many crates of oranges did the grower ship last week? (1) Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped. (2) Last week the grower received a total of$38,700 from the crates of oranges and grapefruit shipped.

We are given that a citrus grower receives $15 for each crate of oranges shipped and$18 for each crate of grapefruit shipped. We can define some variables for the number of crates of oranges shipped and the number of crates of grapefruit shipped.

Let R = the number of crates of oranges shipped and G = the number of crates of grapefruit shipped.

We need to determine the value of R.

Statement One Alone:

Last week the number of crates of oranges that the grower shipped was 20 more than twice the number of crates of grapefruit shipped.

Using statement one we can set up the following equation:

R = 20 + 2G

We cannot determine the value of R, so statement one is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

Last week the grower received a total of $38,700 from the crates of oranges and grapefruit shipped. From statement two we can set up the following equation: 15R + 18G = 38,700 We cannot determine the value of R, so statement two is not sufficient to answer the question. We can eliminate answer choice B. Statements One and Two Together: From statements one and two we have the following equations: 1) R = 20 + 2G 2) 15R + 18G = 38,700 We can simplify the second equation by dividing the entire equation by 3: 3) 5R + 6G = 12,900 At this point we substitute (20 + 2G) from equation (1) for R in equation (3), giving us: 5(20 + 2G) + 6G = 12,900 Now, at this point, we know we can determine a value for G and thus determine a value for R. If we were taking the actual test, we could stop at this point and say that the answer is C. However, let’s finish the math to show the steps in evaluating R. 100 + 10G + 6G = 12,900 100 + 16G = 12,900 G = 12,800/16 G = 800 Since R = 20 + 2G, R = 20 + 2(800) = 1,620. Answer: C _________________ Jeffrey Miller Jeffrey Miller Head of GMAT Instruction Senior Manager Joined: 11 Nov 2014 Posts: 374 Location: India Concentration: Finance, International Business WE: Project Management (Telecommunications) Followers: 2 Kudos [?]: 25 [0], given: 17 Re: A citrus fruit grower receives$15 for each crate of oranges [#permalink]

### Show Tags

24 Jul 2016, 04:46
Bunuel
what is the shortest & quickest way to find out mutiple values of x & y in the equation
5x+6y=12900?
Re: A citrus fruit grower receives $15 for each crate of oranges [#permalink] 24 Jul 2016, 04:46 Go to page 1 2 Next [ 21 posts ] Similar topics Replies Last post Similar Topics: A fruit stand sells apples, pears, and oranges. If oranges cost$ 0.50 2 13 Dec 2015, 04:55
26 A store received 7 crates of oranges. What was the standard 7 06 Oct 2013, 20:59
1 If Simon paid 25 cents for each orange and 15 cents for each 1 19 Aug 2013, 04:59
A citrus fruit grower receives $15 for each crate of oranges 5 25 Jan 2012, 02:42 35 A citrus fruit grower receives$15 for each crate of oranges 21 18 Jul 2009, 17:49
Display posts from previous: Sort by

# A citrus fruit grower receives \$15 for each crate of oranges

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.