GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Jun 2018, 18:39

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 28 Aug 2010
Posts: 237
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post Updated on: 17 Nov 2012, 05:36
8
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

70% (01:34) correct 30% (02:17) wrong based on 223 sessions

HideShow timer Statistics

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

A. 5/18
B. 13/18
C. 1/9
D. 1/6
E. 2/9

_________________

Verbal:new-to-the-verbal-forum-please-read-this-first-77546.html
Math: new-to-the-math-forum-please-read-this-first-77764.html
Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html
-------------------------------------------------------------------------------------------------
Ajit


Originally posted by ajit257 on 22 Jan 2011, 09:25.
Last edited by Bunuel on 17 Nov 2012, 05:36, edited 1 time in total.
Renamed the topic and edited the question.
Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46297
Re: Probability ..tough one [#permalink]

Show Tags

New post 22 Jan 2011, 09:34
2
4
ajit257 wrote:
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts 2 flowers together at random in a bouquet. However customer calls and says she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet ?


Let's count the probability of the opposite event and subtract it from 1. Opposite event would be that the florist made a bouquet with two of the same flower: \(\frac{C^2_2+C^2_3+C^2_4}{C^2_{9}}=\frac{10}{36}\) --> \(P=1-\frac{10}{36}=\frac{26}{36}=\frac{13}{18}\)

Answer: B.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Senior Manager
Senior Manager
User avatar
B
Affiliations: SPG
Joined: 15 Nov 2006
Posts: 310
Re: Probability ..tough one [#permalink]

Show Tags

New post 05 Feb 2011, 10:21
1
1

total possibilities of selecting 2 flowers from 9 = 9*8= 72
position doesn't matter i.e. {AB} & {BA} mean the same. so total cases = \(\frac{72}{2} = 36\)

total cases where both flowers are same.

{AA} = 2*1= 2
{BB} = 3*2= 6
{PP} = 4*3= 12
= 2+6+12= 20

position doesn't matter. so total cases \(= \frac{20}{2} = 10\)

Ans \(= 1 - \frac{10}{36} = \frac{13}{18}\)

_________________

press kudos, if you like the explanation, appreciate the effort or encourage people to respond.

Download the Ultimate SC Flashcards

Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 1900
Re: Probability ..tough one [#permalink]

Show Tags

New post 05 Feb 2011, 10:37
##2 azaleas(A), 3 buttercups(B), and 4 petunias(P)##

To select two flowers, each from a different type is:
1A and 1P
or
1B and 1P
or
1A and 1B

We can select 1A from 2 in \(C^2_1\) ways
We can select 1B from 3 in \(C^3_1\) ways
We can select 1P from 4 in \(C^4_1\) ways

P(2 flowers, each of different type) is

\(\frac{C^2_1*C^3_1+C^2_1*C^4_1+C^3_1*C^4_1}{C^9_2}\)

\(\frac{2*3+2*4+3*4}{9*4}\)

\(\frac{6+8+12}{36}\)

\(\frac{26}{36}\)

Ans: \(\frac{13}{18}\)
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Current Student
User avatar
B
Joined: 12 Oct 2012
Posts: 120
WE: General Management (Other)
GMAT ToolKit User
Florist 2azaleas, 3 buttercups and 4 petunias [#permalink]

Show Tags

New post 16 Nov 2012, 20:19
dimri10 wrote:
2 azaleas, 3 buttercups, and 4 petunias for total of 9:
same flower:
2 azaleas- 2/9*1/8 of choosing the same flower.
3 buttercups- 3/9*2/8
4 petunias - 4/9*3/8
2/72+6/72+12/72=20/72 Probability to chhose the same flower.

we want the probability of not choosing so 1-20/72=52/72=26/36=13/18



Would someone please explain why do we multiply by 1/8, 2/8, 3/8?
1 KUDOS received
Intern
Intern
User avatar
S
Joined: 24 Apr 2013
Posts: 16
Location: Russian Federation
GMAT ToolKit User
Pls help with explanation for this problem from MGMAT Strategy Guide 5 [#permalink]

Show Tags

New post 02 Sep 2014, 00:00
1
What we have: 2A, 3B, 4P
Total: 9 flowers

Prob of selecting 2A: (2/9)(1/8)=1/36
Prob of selecting 2B: (3/9)(2/8)=1/12=3/36
Prob of selecting 2P: (4/9)(3/8)=1/6=6/36

1/36+3/36+6/36=10/36=5/18

1-(5/18)=13/18
Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46297
Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post 02 Sep 2014, 03:09
1
arpshriv wrote:
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together
at random in a bouquet. However, the customer calls and says that she does not
want two of the same flower. What is the probability that the florist does not have to
change the bouquet?


Merging similar tropics. please refer to the discussion above.

P.S. Please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Pay attention to rules 1,3, 7 and 8. Thank you.


_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 02 Mar 2015
Posts: 9
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts... [#permalink]

Show Tags

New post 02 Sep 2015, 09:49
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

Answer:

1. Counting manually (by drawing a table) all possible combinations of bouquets with two same flowes
2. Counting all possible combinations of two flower bouquets by using anagram grid
3. Making probability fraction of amount of possible bouquets with 2 same flowers to all possible bouquets (two same flower and two different flower bouquets)
4. Subtracting upper probability fraction (something we have to exclude) from 1.

The answer is 13/18

I don't understand the solution method being used here. I translated the question being asked as "what is the probability that the first two flower bouquet that the florist picked was NOT a bouquet of two same flowers, meaning what is the probability that the first two flower bouquet that the florist picked was either AB OR BP OR AP?". Basically I used probability tree to solve this but I got different answer : 13/36.

AB = One flower is Azalea AND second flower is Buttercup
2/9 x 3/8 = 1/12

OR

BP = one flower is buttercup and second is petunia
3/9 x 4/8 = 1/6

OR

AP = one flower is azalea and second is petunia
2/9 x 4/8 = 1/9

Final answer = 1/12 + 1/6 + 1/9 = 13/36

How is my thinking wrong?
Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 46297
Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post 02 Sep 2015, 09:56
MariaVorop wrote:
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

Answer:

1. Counting manually (by drawing a table) all possible combinations of bouquets with two same flowes
2. Counting all possible combinations of two flower bouquets by using anagram grid
3. Making probability fraction of amount of possible bouquets with 2 same flowers to all possible bouquets (two same flower and two different flower bouquets)
4. Subtracting upper probability fraction (something we have to exclude) from 1.

The answer is 13/18

I don't understand the solution method being used here. I translated the question being asked as "what is the probability that the first two flower bouquet that the florist picked was NOT a bouquet of two same flowers, meaning what is the probability that the first two flower bouquet that the florist picked was either AB OR BP OR AP?". Basically I used probability tree to solve this but I got different answer : 13/36.

AB = One flower is Azalea AND second flower is Buttercup
2/9 x 3/8 = 1/12

OR

BP = one flower is buttercup and second is petunia
3/9 x 4/8 = 1/6

OR

AP = one flower is azalea and second is petunia
2/9 x 4/8 = 1/9

Final answer = 1/12 + 1/6 + 1/9 = 13/36

How is my thinking wrong?


Merging similar tropics. Please refer to the discussion above.

Also, please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Thank you.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 20 Aug 2015
Posts: 5
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post 18 Sep 2015, 03:58
Hi All,
,

This also one way to solve this, it takes maybe slightly longer. This approach is not efficient when dealing with larger "cases".

Azaleas = A
Buttercups = B
Petunias = B

Recap: For the florist to not change the bouquet, different flowers would have been picked.
So, We need to find the probability of three different cases.
P(AB)+P(AP) + P(BP).

P(AB) = 2/9 * 3/8 = 6/72
P(AP) = 2/9 * 4/8 = 8/72
P(BP) = 4/9 * 3/8 = 12/72

Now in each case, we have two different outcomes (AB + BA)

2*(6/72+ 8/72+12/72) = 52/72 = 13/18
Manager
Manager
avatar
S
Joined: 13 Dec 2013
Posts: 162
Location: United States (NY)
Concentration: Nonprofit, International Business
GMAT 1: 710 Q46 V41
GMAT 2: 720 Q48 V40
GPA: 4
WE: Consulting (Consulting)
Reviews Badge
Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post 12 Apr 2017, 19:44
ajit257 wrote:
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

A. 5/18
B. 13/18
C. 1/9
D. 1/6
E. 2/9



9 flowers. 9C2 = 36 pairs possible.
How many pairs of the same flower? 2C2=1. 3C2=3. 4C2=6. Total of 10 pairs with the same flower. So there are 36-10=26 possible pairs with different flowers. 26/36=13/18.

Kudos if you agree with the method! Please comment if you have improvements.
Expert Post
1 KUDOS received
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2570
Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post 18 Apr 2017, 16:44
1
ajit257 wrote:
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

A. 5/18
B. 13/18
C. 1/9
D. 1/6
E. 2/9


We can use the following formula:

1 = P(getting two of the same flower) + P(not getting two of the same flower)

Let’s determine the probability of getting two of the same flower.

P(2 azaleas) = 2/9 x 1/8 = 2/72

P(2 buttercups) = 3/9 x 2/8 = 6/72

P(4 petunias) = 4/9 x 3/8 = 12/72

The probability of getting two of the same flower is, therefore, 2/72 + 6/72 + 12/72 = 20/72 = 5/18

Thus, the probability of not getting two of the same flower is 1 - 5/18 = 13/18.

Answer: B
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Expert Post
Top Contributor
CEO
CEO
User avatar
P
Joined: 12 Sep 2015
Posts: 2580
Location: Canada
Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]

Show Tags

New post 24 Apr 2018, 10:54
Top Contributor
ajit257 wrote:
A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

A. 5/18
B. 13/18
C. 1/9
D. 1/6
E. 2/9


First, we can rewrite the question as "What is the probability that the two flowers are different colors?"

Well, P(different colors) = 1 - P(same color)

Aside: let A = azalea, let B = buttercup, let P = petunia

P(same color) = P(both A's OR both B's OR both P's)
= P(both A's) + P(both B's) + P(both P's)

Now let's examine each probability:

P(both A's):
We need the 1st flower to be an azalea and the 2nd flower to be an azalea
So, P(both A's) = (2/9)(1/8) = 2/72

P(both B's)
= (3/9)(2/8) = 6/72

P(both P's)
= (4/9)(3/8) = 12/72

So, P(same color) = (2/72) + (6/72) + (12/72) = 20/72 = 5/18

Now back to the beginning:
P(diff colors) = 1 - P(same color)
= 1 - 5/18
= 13/18

Answer: B

Cheers,
Brent
_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She   [#permalink] 24 Apr 2018, 10:54
Display posts from previous: Sort by

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.