GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 29 Mar 2020, 14:32

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# A palindrome is a number that reads the same forward or backward. If t

Author Message
TAGS:

### Hide Tags

VP
Joined: 07 Dec 2014
Posts: 1239
A palindrome is a number that reads the same forward or backward. If t  [#permalink]

### Show Tags

30 Aug 2018, 11:03
2
15
00:00

Difficulty:

95% (hard)

Question Stats:

37% (02:18) correct 63% (02:03) wrong based on 126 sessions

### HideShow timer Statistics

A palindrome is a number that reads the same forward or backward. If the first two digits of a four digit palindrome form a multiple of the last two digits, how many such four digit palindromes are there?

A. 0
B. 6
C. 9
D. 12
E. 18
GMAT Club Legend
Joined: 11 Sep 2015
Posts: 4547
GMAT 1: 770 Q49 V46
Re: A palindrome is a number that reads the same forward or backward. If t  [#permalink]

### Show Tags

30 Aug 2018, 16:07
3
Top Contributor
2
gracie wrote:
A palindrome is a number that reads the same forward or backward. If the first two digits of a four digit palindrome form a multiple of the last two digits, how many such four digit palindromes are there?

A. 0
B. 6
C. 9
D. 12
E. 18

Given that the answer choices are relatively small, we might consider the strategy of listing and counting

To begin, if all 4 digits are the same, then the first two digits of a four digit palindrome form a multiple of the last two digits
For example, in the number 2222, the first two digits (22) is multiple of the last two digits (22)
So, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999 all work.
At this point, we've already listed 9 possible palindromes.
So, we can ELIMINATE A and B

What else is there?

Well, numbers in the form n00n also work, since n0 must be a multiple of n
For example, in the number 2002, the first two digits (20) is multiple of the last two digits (02)
So, 1001, 2002, 3003, 4004, 5005, 6006, 7007, 8008, 9009 all work.
We now have a TOTAL of 18 possible palindromes.

Since 18 is the greatest answer choice, we can be certain that no more palindromes exist.

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
##### General Discussion
Math Expert
Joined: 02 Sep 2009
Posts: 62289
Re: A palindrome is a number that reads the same forward or backward. If t  [#permalink]

### Show Tags

30 Aug 2018, 19:53
1
GMATH Teacher
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 936
Re: A palindrome is a number that reads the same forward or backward. If t  [#permalink]

### Show Tags

30 Aug 2018, 15:06
gracie wrote:
A palindrome is a number that reads the same forward or backward. If the first two digits of a four digit palindrome form a multiple of the last two digits, how many such four digit palindromes are there?

A. 0
B. 6
C. 9
D. 12
E. 18

Beautiful problem!

$$?\,\,\,\,:\,\,\,\,\# \,\,{\text{special}}\,\,{\text{palindromes}}$$

$$\underline {a \ne 0} \,\,\,\underline b \,\,\underline b \,\,\underline a$$

$$1{\text{st}}\,\,{\text{case:}}\,\,\,{\text{a}}\,\,{\text{ = }}\,{\text{b}}\,\,\, \Rightarrow \,\,\,9\,\,{\text{possibilities}}\,\,\,\,\,\left( {1111\,\,,\,\, \ldots \,\,,\,\,9999} \right)$$

$$2{\text{nd}}\,\,{\text{case:}}\,\,\,{\text{a}}\,\, \ne \,{\text{b}}\,\,$$

$${\text{1}} \leqslant \,\,\,{\text{a}}\,\,{\text{ < }}\,\,{\text{b}}\,\,\,\, \Rightarrow \,\,\,\,\left\langle {ab} \right\rangle < \left\langle {ba} \right\rangle \,\,\,\, \Rightarrow \,\,\,0 < \frac{{\left\langle {ab} \right\rangle }}{{\left\langle {ba} \right\rangle }} < 1\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{\left\langle {ab} \right\rangle }}{{\left\langle {ba} \right\rangle }} \ne \operatorname{int}$$

$$b = 0\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{10a}}{a} = \operatorname{int} \,\,\,\,\, \Rightarrow \,\,\,\,9\,\,{\text{possibilities}}\,\,\,\,\,\left( {1001\,\,,\,\, \ldots \,\,,\,\,9009} \right)\,\,\,\,$$

The problem ends here, in terms of GMAT environment: we found 18 possibilities and there are not choices greater than that. We are safe!

Now let´s proof the problem is really with the correct answer, LoL ... (The inspections below are not pretty, but at least there are only a few of them!)

$$1 \leqslant b < \,{\text{a}}\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{\,\left\langle {ab} \right\rangle }}{{\left\langle {ba} \right\rangle }} = \operatorname{int} \geqslant 1\,\,\,\,\, \Rightarrow \,\,\,\, \ldots \,\,\,\,\, \Rightarrow \,\,\,\,a\left( {10 - \operatorname{int} } \right) = b\left( {10\operatorname{int} - 1} \right)$$

$$\operatorname{int} = \left\{ \begin{gathered} 1\,\,\,\, \Rightarrow \,\,\,9a = 9b\,\,\,\,{\text{impossible }}\,\,\left( {{\text{in}}\,\,{\text{this}}\,\,{\text{case}}} \right) \hfill \\ {\text{2}}\,\,\, \Rightarrow \,\,\,72 \geqslant 8a = 19b\,\,\, \Rightarrow \,\,b \leqslant 3\,\,\,\,\,\, \Rightarrow \,\,\,{\text{no}}\,\,{\text{solutions}}\,\,\,\left( {{\text{by}}\,\,{\text{inspection}}} \right)\, \hfill \\ 3\,\,\, \Rightarrow \,\,\,63 \geqslant 7a = 29b\,\,\, \Rightarrow \,\,b \leqslant 2\,\,\,\,\,\, \Rightarrow \,\,\,{\text{no}}\,\,{\text{solutions}}\,\,\,\left( {{\text{by}}\,\,{\text{inspection}}} \right) \hfill \\ 4\,\,\, \Rightarrow \,\,\,54 \geqslant 6a = 39b\,\,\, \Rightarrow \,\,\,b \leqslant 2\,\,\,\, \Rightarrow {\text{no}}\,\,{\text{solutions}}\,\,\,\left( {{\text{by}}\,\,{\text{inspection}}} \right) \hfill \\ \end{gathered} \right.$$

The above follows the notations and rationale taught in the GMATH method.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Non-Human User
Joined: 09 Sep 2013
Posts: 14449
Re: A palindrome is a number that reads the same forward or backward. If t  [#permalink]

### Show Tags

24 Nov 2019, 02:07
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: A palindrome is a number that reads the same forward or backward. If t   [#permalink] 24 Nov 2019, 02:07
Display posts from previous: Sort by