It is currently 23 Sep 2017, 15:00

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# A researcher plans to identify each participant in a certain

Author Message
TAGS:

### Hide Tags

CEO
Joined: 17 Jul 2014
Posts: 2589

Kudos [?]: 380 [0], given: 177

Location: United States (IL)
Concentration: Finance, Economics
Schools: Stanford '20
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

21 Nov 2015, 17:55
i understand the concept of the combinatorics, but how for ex AD is in alphabetical order?
I thought that we are restricted to use a pair of letters only in alphabetical order, ex: AB, BC, CD, etc.
that is my understanding of the alphabetical order.

Kudos [?]: 380 [0], given: 177

EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 9814

Kudos [?]: 3318 [0], given: 171

Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

22 Nov 2015, 00:13
Hi mvictor,

There's a difference between alphabetical order and CONSECUTIVE alphabetical order (in the same way that there's a difference between putting integers in numerical order and dealing with consecutive integers).

As an example, when dealing with the letters A, B, C and D there are 6 different pairs of letters that you could put in alphabetical order:

AB
AC
BC
BD
CD

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

# Rich Cohen

Co-Founder & GMAT Assassin

# Special Offer: Save \$75 + GMAT Club Tests Free

Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Kudos [?]: 3318 [0], given: 171

Intern
Joined: 11 Oct 2012
Posts: 42

Kudos [?]: 9 [0], given: 74

GMAT 1: 610 Q42 V32
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

04 Mar 2016, 10:39
Bunuel wrote:

Notice that we are told that letters in the code should be written in alphabetical order. Now, 2Cn gives different pairs of 2 letters possible out of n letters, but since codes should be written in one particular order (alphabetical), then for each pair there will be only one ordering possible, thus the number of codes out of n letters equals to number of pairs out of n letters.

Hope it's clear.

Hi Bunuel,

From n letters we choose the number of pairs, the result will be $$C^2_n$$ which may include 2 kinds of pairs (AB) and (BA). Still confused .[/quote]

Maybe the following example would help. Consider 4 letters {a, b, c, d}. How many 2-letter words in alphabetical order are possible? The answer is $$C^2_4=6$$:
ab;
ac;
bc;
bd;
cd.[/quote]

So it is essentially COMBINATION that matters... even if it were not told alphabetical, then we had to consider permutation... so AB and BA would be different !!
Got it now.. Thanks Bunuel... some where in the wording of the Qs , it seemed like we needed to do a nc2 / 2.....

Kudos [?]: 9 [0], given: 74

Senior Manager
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 393

Kudos [?]: 460 [0], given: 53

Location: United States (CA)
Age: 37
GMAT 1: 770 Q47 V48
GMAT 2: 730 Q44 V47
GMAT 3: 750 Q50 V42
GRE 1: 337 Q168 V169
WE: Education (Education)
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

25 May 2016, 18:47
Attached is a visual that should help.
Attachments

Screen Shot 2016-05-25 at 6.44.12 PM.png [ 64.3 KiB | Viewed 562 times ]

_________________

Harvard grad and 770 GMAT scorer, offering high-quality private GMAT tutoring, both in-person and via Skype, since 2002.

McElroy Tutoring

Kudos [?]: 460 [0], given: 53

Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 1537

Kudos [?]: 778 [0], given: 2

Location: United States (CA)
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

15 Jun 2016, 06:06
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Let's use the answer choices to help us solve this problem. We are looking for the minimum number of letters that can be used. The smallest number from the answer choices is 4, so let’s ask ourselves this question: Can we use only 4 letters to represent the 12 participants? Assume that the 4 letters are A, B, C and D (keep in mind that for each participant we can use either one letter OR two letters to represent him or her; however if we use two letters, they must be in alphabetical order):

1) A 2) B 3) C 4) D 5) AB 6) AC 7) AD 8) BC 9) BD 10) CD

Under this scheme, we can represent only 10 of the 12 participants. So let's add in one more letter, say E, and see if having an additional letter allows us to have a unique identifier for each of the 12 participants:

1) A 2) B 3) C 4) D 5) AB 6) AC 7) AD 8) BC 9) BD 10) CD 11) E 12) AE

As you can see, once we’ve added in the letter E we can represent all 12 participants. Since we’ve used A, B, C, D and E, the minimum number of letters that can be used is 5.

_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 778 [0], given: 2

Intern
Joined: 31 Jan 2016
Posts: 27

Kudos [?]: 2 [0], given: 6

Schools: Rotman '19 (A)
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

17 Aug 2016, 08:22
Hi,

Could someone please explain how we went from n!/2!(n-2)! -> n(n-1)/2 ?

Kudos [?]: 2 [0], given: 6

Intern
Joined: 31 Jan 2016
Posts: 27

Kudos [?]: 2 [0], given: 6

Schools: Rotman '19 (A)
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

17 Aug 2016, 08:45
In addition to the above query, I am still unclear as to why we use combination formula to solve this particular question when order clearly matters? I read Bunuels response as to why, but I am still unclear. I must have spent 5 days reading the explanation.

Posted from my mobile device

Kudos [?]: 2 [0], given: 6

Manager
Joined: 07 Jul 2016
Posts: 80

Kudos [?]: 25 [1], given: 51

GPA: 4
A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

17 Aug 2016, 10:36
1
KUDOS
g3lo18 wrote:
In addition to the above query, I am still unclear as to why we use combination formula to solve this particular question when order clearly matters? I read Bunuels response as to why, but I am still unclear. I must have spent 5 days reading the explanation.

Posted from my mobile device

(replying here instead of in chat as there's an MBA session going on).

The only thing that matters is the number of distinct pairs.

Stating that the order must be alphabetical states that only 1 of all potential pairs is valid. This is equivalent to the combination formula as shown below.

For example, with $$\{A,B,C,D\}$$, the list of permutations of size 2 is $$4_P 2 = 12$$

AB, BA = 2! ways to arrange 2 elements
AC, CA
BC, CB
BD, DB
CD, DC

Saying that the order of the selection does not matter is equivalent to saying that every permutation is the same which is equivalent to saying that only one of each permutation is valid.

Permutations = $$\frac{n!}{(n-k)!}$$
Combinations = $$\frac{n!}{k!(n-k)!}$$
Number of ways of arranging each new selection of elements = $$k!$$
Where 1 out of every new selection is valid = $$\frac{1}{k!}$$
Permutations where only 1 permutation is valid = $$\frac{n!}{(n-k)!} \times \frac{1}{k!} =$$ Combinations
_________________

Please press +1 Kudos if this post helps.

Kudos [?]: 25 [1], given: 51

Intern
Joined: 31 Jan 2016
Posts: 27

Kudos [?]: 2 [0], given: 6

Schools: Rotman '19 (A)
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

17 Aug 2016, 10:53
Thank you for that.

I guess my confusion stems from watching the GMATPrepNow videos. Brent explains that if the order does not matter, we use nCr formula. However, in this case it does matter (alphabetical). I guess there may be an error in his videos?

Kudos [?]: 2 [0], given: 6

Manager
Joined: 07 Jul 2016
Posts: 80

Kudos [?]: 25 [0], given: 51

GPA: 4
A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

17 Aug 2016, 11:22
g3lo18 wrote:
Thank you for that.

I guess my confusion stems from watching the GMATPrepNow videos. Brent explains that if the order does not matter, we use nCr formula. However, in this case it does matter (alphabetical). I guess there may be an error in his videos?

Sorry, this is relatively hard to explain and I don't feel I'm making a good job of explaining it.

In this question, the order does not matter.

The problem lies with the interpretation of the phrase "the order matters". Specifically it means: when selecting a set of elements for the output, every permutation of that set is valid. This means that $$\{A,B,D\}$$ and $$\{D,A,B\}$$ are both distinct and valid elements in the solution set.

A combination on the other hand specifies that $$\{A,B,D\}$$ and $$\{D,A,B\}$$ are equivalent (which can also be described by saying that the order does not matter). This means that for the set of possible solutions containing three elements, only one of which is valid.

In this question, every pair of letters maps to a single solution: out of $$\{\{A,B\},\{B,A\}\}$$, only $$\{A,B\}$$ is valid. We are performing the operation of moving from a set of elements to a single element. Therefore we use combinations.

EDIT (may be more clear): In this question, we are first taking a collection of letters and determining how many pairs of distinct letters we can make (permutations). For every pair of distinct letters, we are then mapping from that collection to a single element. This map from a collection to a single element is a combination (all elements in the set of $$\{\{A,B\},\{B,A\}\}$$ are not a valid solutions, but each is a map to the single valid solution in the set: $$\{A,B\})$$.

There is a good video explaining the concept here (the example at 5:01): https://www.coursera.org/learn/fe-exam/ ... mbinations

I hope this helps (and sorry that I can't explain things better).
_________________

Please press +1 Kudos if this post helps.

Kudos [?]: 25 [0], given: 51

Manager
Joined: 17 Aug 2015
Posts: 105

Kudos [?]: 10 [0], given: 196

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

03 Sep 2016, 11:46
here is how I did this.
let us say we have 4 to begin with.
A,B,C,D
we can have A,B,C,D ==> 4
AB, AC, AD - 3 with first letter as A
2 with first letter as B
1 with first letter as C. so in total we have 4+3+2+1= 2.5*4 = 10.
Notice that this is as Bunuel explained is nC2+n.

By this we can apply intuition and see that with 5 we will definitely climb 12.
nC2 + 5 = 10+5 = 15. We only needed 12. So B.

Kudos [?]: 10 [0], given: 196

Intern
Joined: 10 Aug 2016
Posts: 11

Kudos [?]: 2 [0], given: 2

GMAT 1: 600 Q44 V29
Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

01 Dec 2016, 09:35
Hello,

can somebody tell me what the expression C2n means?

Kudos [?]: 2 [0], given: 2

Intern
Joined: 05 Dec 2016
Posts: 8

Kudos [?]: 1 [0], given: 40

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

13 Dec 2016, 10:11
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Doesn't it say the pair of letters will be in alphabetical order? How can that be $$nC2$$?

Kudos [?]: 1 [0], given: 40

Math Expert
Joined: 02 Sep 2009
Posts: 41698

Kudos [?]: 124653 [0], given: 12079

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

13 Dec 2016, 10:15
ilaukikt wrote:
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Doesn't it say the pair of letters will be in alphabetical order? How can that be $$nC2$$?

_________________

Kudos [?]: 124653 [0], given: 12079

Intern
Joined: 12 Dec 2016
Posts: 13

Kudos [?]: [0], given: 4

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

21 Mar 2017, 12:46
Since the question says "either one or a pair of distinct letter", i made the calculation as in ; " A, AB,BA, B, C,CB,CA,... etc therefore 4 letters were sufficient. How am i supposed to understand that if we are going to use "only single letters or pair of distinct letters" alltogether?

Kudos [?]: [0], given: 4

Manager
Joined: 03 Jan 2017
Posts: 200

Kudos [?]: 9 [0], given: 4

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

25 Mar 2017, 12:15
we can use combinators formula to get to the answer

2Cx+x>=12
let's try answers: B fits right: 10+5>=15

Kudos [?]: 9 [0], given: 4

Intern
Joined: 03 Jul 2016
Posts: 13

Kudos [?]: 1 [0], given: 36

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

25 Mar 2017, 19:16
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

in this problem
If i write the sequence - A, B, C, D, AB, AC, AD, BA, BC, BD, CA, CB
why we should not consider AB and BA as separate entity?

Kudos [?]: 1 [0], given: 36

Math Expert
Joined: 02 Sep 2009
Posts: 41698

Kudos [?]: 124653 [0], given: 12079

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

26 Mar 2017, 04:57
Avinash_R1 wrote:
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

in this problem
If i write the sequence - A, B, C, D, AB, AC, AD, BA, BC, BD, CA, CB
why we should not consider AB and BA as separate entity?

We are told ion the stem that the codes must be in alphabetical order. BA is not in alphabetical order. BTW this is explained many times on previous pages.
_________________

Kudos [?]: 124653 [0], given: 12079

Intern
Joined: 10 Nov 2016
Posts: 7

Kudos [?]: [0], given: 97

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

24 Apr 2017, 02:06
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Hello Bunuel,

Thanks for the post.
How do we know if $$C^2_n$$ (combination of distinct letters codes possible is in alphabetical order?
For me $$C^2_n$$ is just the combination but does not have the constraint of being in alphabetical order. More clarification would be appreciated!

Kudos [?]: [0], given: 97

Math Expert
Joined: 02 Sep 2009
Posts: 41698

Kudos [?]: 124653 [0], given: 12079

Re: A researcher plans to identify each participant in a certain [#permalink]

### Show Tags

24 Apr 2017, 02:08
samia33 wrote:
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Hello Bunuel,

Thanks for the post.
How do we know if $$C^2_n$$ (combination of distinct letters codes possible is in alphabetical order?
For me $$C^2_n$$ is just the combination but does not have the constraint of being in alphabetical order. More clarification would be appreciated!

More clarification is given on previous 5 pages.
_________________

Kudos [?]: 124653 [0], given: 12079

Re: A researcher plans to identify each participant in a certain   [#permalink] 24 Apr 2017, 02:08

Go to page   Previous    1   2   3   4   5    Next  [ 91 posts ]

Similar topics Replies Last post
Similar
Topics:
2 Of the twelve participants in a certain competition 3 05 Jul 2014, 12:27
8 In a certain learning experiment, each participant had three trials an 7 10 Sep 2017, 03:12
26 A certain research group plans to create computer models of 20 23 Nov 2016, 06:16
3 If each of the 12 teams participating in a certain tournament plays 2 22 Jul 2017, 02:49
15 Each participant in a certain study was assigned a sequence 7 27 May 2017, 06:43
Display posts from previous: Sort by