GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 06 Jul 2020, 19:07 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # A right cone is to be placed within a rectangular box so that the cone

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 65014
A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

1
5 00:00

Difficulty:   65% (hard)

Question Stats: 46% (01:39) correct 54% (01:44) wrong based on 96 sessions

### HideShow timer Statistics

A right cone is to be placed within a rectangular box so that the cone stands upright when the box is placed on one of its sides. If the dimensions of the box are 2 inches by 2 inches by 4 inches, then what is the greatest possible volume of such a cone?

A. $$(\frac{2}{3})π$$

B. $$(\frac{4}{3})π$$

C. $$2π$$

D. $$(\frac{8}{3})π$$

E. $$4π$$

Are You Up For the Challenge: 700 Level Questions

_________________
GMAT Club Legend  V
Joined: 18 Aug 2017
Posts: 6427
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

1
vol of cone ; 1/3 * pi * r^2 *h
r has to be max to get max vol ; let side of base = 2 ; r = 1
h = 4
we get vol=
$$(\frac{4}{3})π$$
IMO B

Bunuel wrote:
A right cone is to be placed within a rectangular box so that the cone stands upright when the box is placed on one of its sides. If the dimensions of the box are 2 inches by 2 inches by 4 inches, then what is the greatest possible volume of such a cone?

A. $$(\frac{2}{3})π$$

B. $$(\frac{4}{3})π$$

C. $$2π$$

D. $$(\frac{8}{3})π$$

E. $$4π$$

Are You Up For the Challenge: 700 Level Questions

Originally posted by Archit3110 on 12 Nov 2019, 02:26.
Last edited by Archit3110 on 12 Nov 2019, 12:37, edited 1 time in total.
DS Forum Moderator V
Joined: 19 Oct 2018
Posts: 1985
Location: India
A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

The maximum possible diameter of cone that can fit in the box, d= max{min(2,4), min(2,4), min(2,2)}=2

height, h= 4 inches

Volume= $$\frac{1}{3}* pi* r^2*h$$= $$\frac{1}{3}*pi*1^2*4$$= $$\frac{4}{3} pi$$

Bunuel wrote:
A right cone is to be placed within a rectangular box so that the cone stands upright when the box is placed on one of its sides. If the dimensions of the box are 2 inches by 2 inches by 4 inches, then what is the greatest possible volume of such a cone?

A. $$(\frac{2}{3})π$$

B. $$(\frac{4}{3})π$$

C. $$2π$$

D. $$(\frac{8}{3})π$$

E. $$4π$$

Are You Up For the Challenge: 700 Level Questions

Originally posted by nick1816 on 12 Nov 2019, 12:18.
Last edited by nick1816 on 12 Nov 2019, 12:29, edited 1 time in total.
GMAT Club Legend  V
Joined: 18 Aug 2017
Posts: 6427
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
Re: A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

nick1816 for box of 2x2x4 dimension how can a cone fit with height 4 and radius 2 ?
If one side is taken as 2 then won't it's radius be 1 ?

nick1816 wrote:
The maximum possible diameter of cone that can fit in the box, d= max{min(2,4), min(2,4), min(2,2)}=2

height, h= 4 inches

Volume= $$\frac{1}{3}* pi* r^2*h$$= $$\frac{1}{3}*pi*1^2*4$$= $$\frac{4}{3} pi$$

Bunuel wrote:
A right cone is to be placed within a rectangular box so that the cone stands upright when the box is placed on one of its sides. If the dimensions of the box are 2 inches by 2 inches by 4 inches, then what is the greatest possible volume of such a cone?

A. $$(\frac{2}{3})π$$

B. $$(\frac{4}{3})π$$

C. $$2π$$

D. $$(\frac{8}{3})π$$

E. $$4π$$

Are You Up For the Challenge: 700 Level Questions

Posted from my mobile device
DS Forum Moderator V
Joined: 19 Oct 2018
Posts: 1985
Location: India
A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

brother that was a typo... check i took 1 in the calculation. it happens when you post solutions at 2AM.

Archit3110 wrote:
nick1816 for box of 2x2x4 dimension how can a cone fit with height 4 and radius 2 ?
If one side is taken as 2 then won't it's radius be 1 ?

nick1816 wrote:
The maximum possible diameter of cone that can fit in the box, d= max{min(2,4), min(2,4), min(2,2)}=2

height, h= 4 inches

Volume= $$\frac{1}{3}* pi* r^2*h$$= $$\frac{1}{3}*pi*1^2*4$$= $$\frac{4}{3} pi$$

Bunuel wrote:
A right cone is to be placed within a rectangular box so that the cone stands upright when the box is placed on one of its sides. If the dimensions of the box are 2 inches by 2 inches by 4 inches, then what is the greatest possible volume of such a cone?

A. $$(\frac{2}{3})π$$

B. $$(\frac{4}{3})π$$

C. $$2π$$

D. $$(\frac{8}{3})π$$

E. $$4π$$

Are You Up For the Challenge: 700 Level Questions

Posted from my mobile device
Manager  G
Joined: 31 Oct 2015
Posts: 95
A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

Volume of a cone is $$\frac{1}{3}*\pi*r^2*h$$

h=4 then r=1 ( we need a square base to fit the largest cone diameter)

There fore the largest volume is = $$\frac{1}{3}*\pi*1*4$$ = $$\frac{4}{3}*\pi$$

Intern  B
Joined: 23 Nov 2016
Posts: 6
Location: United Kingdom
Schools: Oxford "21
Re: A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

I am not probably getting the diagram right in my head on this. Why can't the diameter be taken as 4 and height 2?
DS Forum Moderator V
Joined: 19 Oct 2018
Posts: 1985
Location: India
Re: A right cone is to be placed within a rectangular box so that the cone  [#permalink]

### Show Tags

You can't fit a circle of diameter 4 cm in any of the faces of rectangular box

Attachment: Untitled.png [ 7.95 KiB | Viewed 320 times ]

Similar Question in OG 2021

https://gmatclub.com/forum/the-outer-di ... 22504.html

Vniks wrote:
I am not probably getting the diagram right in my head on this. Why can't the diameter be taken as 4 and height 2? Re: A right cone is to be placed within a rectangular box so that the cone   [#permalink] 30 May 2020, 18:00

# A right cone is to be placed within a rectangular box so that the cone  