GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Oct 2018, 11:41

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

A square with area 16 is perfectly inscribed inside an equ

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 09 Feb 2013
Posts: 118
A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 12 Mar 2013, 22:31
1
3
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

74% (02:53) correct 26% (02:57) wrong based on 199 sessions

HideShow timer Statistics

A square with area 16 is perfectly inscribed inside an equilateral triangle. What is the perimeter of the triangle?

A. (83√3)3+4
B. 4√3+4
C. 8√3+12
D. 24+12
E. (32√3)3+12

_________________

Kudos will encourage many others, like me.
Good Questions also deserve few KUDOS.

Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 613
Premium Member
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 12 Mar 2013, 23:25
1
emmak wrote:
A square with area 16 is perfectly inscribed inside an equilateral triangle. What is the perimeter of the triangle?
a) (83√3)3+4
b) 4√3+4
c) 8√3+12
d) 24+12
e) (32√3)3+12


As Bunuel has mentioned that GMAT doesn't test Trigonometry, I will give a geometric approach for this problem. Let's take the base of the triangle. The middle portion is of 4 units. The small right angle triangle formed to the left of the square has 4 units opposite 60 degrees. Thus, the side opposite 30 degrees is \(4/\sqrt{3}\). This will be same for the small right angle triangle on the right of the square too. Thus the total length of the base = 2*\(4/\sqrt{3}\)+4. Thus the perimeter of the triangle is \(3*(8/\sqrt{3} +4) = 8*\sqrt{3}+12.\)

C.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Manager
Manager
avatar
Joined: 21 Oct 2013
Posts: 187
Location: Germany
GMAT 1: 660 Q45 V36
GPA: 3.51
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 21 Nov 2013, 00:00
mau5 wrote:
emmak wrote:
A square with area 16 is perfectly inscribed inside an equilateral triangle. What is the perimeter of the triangle?
a) (83√3)3+4
b) 4√3+4
c) 8√3+12
d) 24+12
e) (32√3)3+12


As Bunuel has mentioned that GMAT doesn't test Trigonometry, I will give a geometric approach for this problem. Let's take the base of the triangle. The middle portion is of 4 units. The small right angle triangle formed to the left of the square has 4 units opposite 60 degrees. Thus, the side opposite 30 degrees is \(4/\sqrt{3}\). This will be same for the small right angle triangle on the right of the square too. Thus the total length of the base = 2*\(4/\sqrt{3}\)+4. Thus the perimeter of the triangle is \(3*(8/\sqrt{3} +4) = 8*\sqrt{3}+12.\)

C.


Hey mau5, could you explain how you knew that the opposite side of 30 degrees was \(4/\sqrt{3}\)? I follow your approach, but I don't get how you know that.

Thanks!
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 613
Premium Member
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 21 Nov 2013, 00:19
2
unceldolan wrote:
mau5 wrote:
emmak wrote:
A square with area 16 is perfectly inscribed inside an equilateral triangle. What is the perimeter of the triangle?
a) (83√3)3+4
b) 4√3+4
c) 8√3+12
d) 24+12
e) (32√3)3+12


As Bunuel has mentioned that GMAT doesn't test Trigonometry, I will give a geometric approach for this problem. Let's take the base of the triangle. The middle portion is of 4 units. The small right angle triangle formed to the left of the square has 4 units opposite 60 degrees. Thus, the side opposite 30 degrees is \(4/\sqrt{3}\). This will be same for the small right angle triangle on the right of the square too. Thus the total length of the base = 2*\(4/\sqrt{3}\)+4. Thus the perimeter of the triangle is \(3*(8/\sqrt{3} +4) = 8*\sqrt{3}+12.\)

C.


Hey mau5, could you explain how you knew that the opposite side of 30 degrees was \(4/\sqrt{3}\)? I follow your approach, but I don't get how you know that.Thanks!


A right angle triangle where the angles are 30:60:90 , the respective opposite sides are always in the ratio \(1:\sqrt{3}:2.\)

As the side opposite 60 degrees is 4, hence, the side opposite 30 degrees would be\(\frac{4}{\sqrt{3}}\)

For getting a thorough understanding, go through this : math-triangles-87197.html
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

VP
VP
User avatar
V
Status: It's near - I can see.
Joined: 13 Apr 2013
Posts: 1266
Location: India
Concentration: International Business, Operations
GMAT 1: 480 Q38 V22
GPA: 3.01
WE: Engineering (Consulting)
Premium Member Reviews Badge CAT Tests
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 26 Jun 2015, 00:31
mau5 wrote:
emmak wrote:
A square with area 16 is perfectly inscribed inside an equilateral triangle. What is the perimeter of the triangle?
a) (83√3)3+4
b) 4√3+4
c) 8√3+12
d) 24+12
e) (32√3)3+12


As Bunuel has mentioned that GMAT doesn't test Trigonometry, I will give a geometric approach for this problem. Let's take the base of the triangle. The middle portion is of 4 units. The small right angle triangle formed to the left of the square has 4 units opposite 60 degrees. Thus, the side opposite 30 degrees is \(4/\sqrt{3}\). This will be same for the small right angle triangle on the right of the square too. Thus the total length of the base = 2*\(4/\sqrt{3}\)+4. Thus the perimeter of the triangle is \(3*(8/\sqrt{3} +4) = 8*\sqrt{3}+12.\)

C.


Isn't the side equals to 4 under root 3 instead of 4/ under root 3..
_________________

"Do not watch clock; Do what it does. KEEP GOING."

Manager
Manager
avatar
B
Joined: 27 May 2014
Posts: 81
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 26 Jun 2015, 04:55
Can someone draw this?
Retired Moderator
User avatar
S
Joined: 18 Sep 2014
Posts: 1131
Location: India
GMAT ToolKit User Premium Member Reviews Badge
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 18 Sep 2016, 10:18
3
Following \(1:\sqrt{3}:2\) rule in \(30:60:90\) angled triangle.

Attachment:
photo_3.png
photo_3.png [ 1.38 MiB | Viewed 1290 times ]
Senior Manager
Senior Manager
User avatar
G
Joined: 03 Apr 2013
Posts: 280
Location: India
Concentration: Marketing, Finance
GMAT 1: 740 Q50 V41
GPA: 3
GMAT ToolKit User
Re: A square with area 16 is perfectly inscribed inside an equ  [#permalink]

Show Tags

New post 19 Nov 2017, 06:56
emmak wrote:
A square with area 16 is perfectly inscribed inside an equilateral triangle. What is the perimeter of the triangle?

A. (83√3)3+4
B. 4√3+4
C. 8√3+12
D. 24+12
E. (32√3)3+12


No need to use trigonometry. Here's what I did.
Attachments

Triangle.jpg
Triangle.jpg [ 3.37 MiB | Viewed 665 times ]


_________________

Spread some love..Like = +1 Kudos :)

GMAT Club Bot
Re: A square with area 16 is perfectly inscribed inside an equ &nbs [#permalink] 19 Nov 2017, 06:56
Display posts from previous: Sort by

A square with area 16 is perfectly inscribed inside an equ

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.