ABC is a right angle triangle, right angled at B Co ordinate : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 26 Feb 2017, 18:34

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# ABC is a right angle triangle, right angled at B Co ordinate

Author Message
TAGS:

### Hide Tags

VP
Status: Final Lap Up!!!
Affiliations: NYK Line
Joined: 21 Sep 2012
Posts: 1096
Location: India
GMAT 1: 410 Q35 V11
GMAT 2: 530 Q44 V20
GMAT 3: 630 Q45 V31
GPA: 3.84
WE: Engineering (Transportation)
Followers: 38

Kudos [?]: 532 [0], given: 70

ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

11 Nov 2012, 15:04
7
This post was
BOOKMARKED
00:00

Difficulty:

65% (hard)

Question Stats:

61% (03:14) correct 39% (02:14) wrong based on 245 sessions

### HideShow timer Statistics

ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?

Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2
[Reveal] Spoiler: OA

Last edited by Archit143 on 11 Nov 2012, 16:35, edited 1 time in total.
Magoosh GMAT Instructor
Joined: 28 Dec 2011
Posts: 3850
Followers: 1332

Kudos [?]: 6126 [1] , given: 71

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

11 Nov 2012, 16:12
1
KUDOS
Expert's post
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?
A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

I'm happy to help with this.

We know the hypotenuse AC = 5, and we know BC = 3, because B & C have the same y-coordinate (BC is horizontal) and they are separated in the horizontal direction by 3.

If a right triangle has a hypotenuse of 5 and one leg of 3, the other leg has to be 4. That is the inescapable conclusion of the Pythagorean Theorem. We must have a 3-4-5 triangle.

The trouble is ---- we don't know if Z > Y or Z < Y ---- the problem provides no information on that point. Thus, we have a horizontal segment BC of length 3, with a right angle at B, but we don't know whether the perpendicular segment AB goes up or down from B. We know AB must have a length of 4 and that it must make a right angle with B, but we don't know whether the direction from B to A is up or down. Therefore, the slope of AB could be either +4/3 or -4/3. Two answers are possible here.

I suspect either something was not copied correctly from the source, or that the source is faulty.

Let me know if you have any questions.

Mike
_________________

Mike McGarry
Magoosh Test Prep

VP
Status: Final Lap Up!!!
Affiliations: NYK Line
Joined: 21 Sep 2012
Posts: 1096
Location: India
GMAT 1: 410 Q35 V11
GMAT 2: 530 Q44 V20
GMAT 3: 630 Q45 V31
GPA: 3.84
WE: Engineering (Transportation)
Followers: 38

Kudos [?]: 532 [0], given: 70

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

11 Nov 2012, 16:28
mikemcgarry wrote:
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?
A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

I'm happy to help with this.

We know the hypotenuse AC = 5, and we know BC = 3, because B & C have the same y-coordinate (BC is horizontal) and they are separated in the horizontal direction by 3.

If a right triangle has a hypotenuse of 5 and one leg of 3, the other leg has to be 4. That is the inescapable conclusion of the Pythagorean Theorem. We must have a 3-4-5 triangle.

The trouble is ---- we don't know if Z > Y or Z < Y ---- the problem provides no information on that point. Thus, we have a horizontal segment BC of length 3, with a right angle at B, but we don't know whether the perpendicular segment AB goes up or down from B. We know AB must have a length of 4 and that it must make a right angle with B, but we don't know whether the direction from B to A is up or down. Therefore, the slope of AB could be either +4/3 or -4/3. Two answers are possible here.

I suspect either something was not copied correctly from the source, or that the source is faulty.

Let me know if you have any questions.

Mike

Hi Mike

First of all thanks for replying to my post.... The actual question is to find the equation of AC which is not difficult after we get the slope.

Pls find below the actual question

In the figure to the left, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the equation of line AC?

The co ordinates remains the same as in the original question.

My doubt is
When we get the 3 - 4 -5 triangle with clear value as 3 , 4 and 5 not as ratio, also from the equation we know that change in y axis (delta Y ) is 4 and that of X axis is 3. why cant we conclude straight away that the slope is 4/3 .
Yes if we substitute the value of Z as y+ 4 than we get - 4/3

Why is it so..............
The solution assumes the value to be - 4/3 and calculates the equation of line.
Question; why is there two possible SLOPE of a single line.........
VP
Status: Final Lap Up!!!
Affiliations: NYK Line
Joined: 21 Sep 2012
Posts: 1096
Location: India
GMAT 1: 410 Q35 V11
GMAT 2: 530 Q44 V20
GMAT 3: 630 Q45 V31
GPA: 3.84
WE: Engineering (Transportation)
Followers: 38

Kudos [?]: 532 [0], given: 70

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

11 Nov 2012, 16:34
The line segment AB goes up in the.
The fig is drawn in 1st quadrant and Z > Y
I think that will help to arrive a conclusion

Sorry for the trouble i ll edit the original question.
Current Student
Joined: 06 Sep 2013
Posts: 2035
Concentration: Finance
GMAT 1: 770 Q0 V
Followers: 64

Kudos [?]: 605 [0], given: 355

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

28 Dec 2013, 10:05
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?

Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

A is the answer to this one

Let me explain

We need to draw the triangle first. Now, x =3 so we are going to have a pythagorean triple 3-4-5.
Now are coordinate for A (3,z) C (6,y)

Slope will be (y-z )/ (6-3)

Do we know y-z? Yes we do from the height of the right triangle we get that difference of z-y = 4

Hence y-z will just be -4

So the slope is -4/3

Hope it helps
Cheers!

J
Intern
Joined: 13 Nov 2013
Posts: 5
Followers: 0

Kudos [?]: 4 [2] , given: 8

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

18 Jan 2014, 12:20
2
KUDOS
From the option, it is easy to find out the answer.

Right angled triangle == Negative slope. Only one negative option.

Method 2:

Since it is coordinate geometry , consider x = 0, y=0.

Then the coordinates A = (0,z) B = (0,0) C = (3,y)

Slope of the equation = (y2-y1)/(x2-x1) and the distance between AC = 5.

So (y-z)^2 = 16 or y-z = + or - 4.

Slope of the hypotenuse is -4/3 or 4/3 . But the hypotenuse will have negative slope, so the answer = -4/3

So the equation will be in the form of 4x+3y+K = 0.
Intern
Joined: 06 Jan 2014
Posts: 46
Followers: 0

Kudos [?]: 10 [0], given: 23

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

18 Jan 2014, 20:41
mikemcgarry wrote:
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?
A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

I'm happy to help with this.

We know the hypotenuse AC = 5, and we know BC = 3, because B & C have the same y-coordinate (BC is horizontal) and they are separated in the horizontal direction by 3.

If a right triangle has a hypotenuse of 5 and one leg of 3, the other leg has to be 4. That is the inescapable conclusion of the Pythagorean Theorem. We must have a 3-4-5 triangle.

The trouble is ---- we don't know if Z > Y or Z < Y ---- the problem provides no information on that point. Thus, we have a horizontal segment BC of length 3, with a right angle at B, but we don't know whether the perpendicular segment AB goes up or down from B. We know AB must have a length of 4 and that it must make a right angle with B, but we don't know whether the direction from B to A is up or down. Therefore, the slope of AB could be either +4/3 or -4/3. Two answers are possible here.

I suspect either something was not copied correctly from the source, or that the source is faulty.

Let me know if you have any questions.

Mike

It is 100% choice D because it is inferable that with the coordinate description (X,Z), (X,Y), (X+3,Y) that $$X=X$$ and for Y to be parallel, the (X,Z) and (x+3,Y) relationship must be positive
Magoosh GMAT Instructor
Joined: 28 Dec 2011
Posts: 3850
Followers: 1332

Kudos [?]: 6126 [1] , given: 71

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

19 Jan 2014, 14:18
1
KUDOS
Expert's post
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?

Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

Apparently Archit added this very important note after I wrote my initial response to the problem. As they say, a picture is worth a thousand words, and a GMAT math problem that includes a diagram often will make little or no sense without the diagram. The GMAT never gives you a diagram unless there's some crucial piece of information you need from the diagram: this is a very important point to appreciate.

With this added piece of information, it's perfectly clear that the answer is (A). If Z > Y, then the line must move DOWN from (X,Z) to (X+3, Y). That's the definition of a negative slope. With the analysis above, we saw that the slope would have to be either -4/3 or +4/3. With the information from the diagram it's clear that the slope is -4/3, answer = (A).

Please let me know if anyone has any further questions.
Mike
_________________

Mike McGarry
Magoosh Test Prep

Manager
Joined: 08 Nov 2014
Posts: 94
Location: India
GPA: 3
WE: Engineering (Manufacturing)
Followers: 0

Kudos [?]: 15 [0], given: 90

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

17 Jan 2015, 07:40
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?

Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

In triangle ABC line AB is parallel to Y-axis and line BC is parallel to X axis . Z>Y so line AC will be in 1 st quadrant
AC=5, BC= 3 and AB=\sqrt{(5^2-3^2)}=4
angle ACB, Tan(ACB)=4/3,NOTE : Slope of any line is always taken from positive x-axis in anticlockwise direction.
Slope=tan(180-ACB)=-tan (ACB)=-4/3

_________________

"Arise, Awake and Stop not till the goal is reached"

Director
Joined: 07 Aug 2011
Posts: 581
GMAT 1: 630 Q49 V27
Followers: 3

Kudos [?]: 420 [0], given: 75

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

20 Feb 2015, 06:36
mikemcgarry wrote:
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?

Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

Apparently Archit added this very important note after I wrote my initial response to the problem. As they say, a picture is worth a thousand words, and a GMAT math problem that includes a diagram often will make little or no sense without the diagram. The GMAT never gives you a diagram unless there's some crucial piece of information you need from the diagram: this is a very important point to appreciate.

With this added piece of information, it's perfectly clear that the answer is (A). If Z > Y, then the line must move DOWN from (X,Z) to (X+3, Y). That's the definition of a negative slope. With the analysis above, we saw that the slope would have to be either -4/3 or +4/3. With the information from the diagram it's clear that the slope is -4/3, answer = (A).

Please let me know if anyone has any further questions.
Mike

Sorry i did not understand quite well .
Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.
how can point B lie above A if Z>Y ? A, B are (X,Z), (X,Y)
_________________

Thanks,
Lucky

_______________________________________________________
Kindly press the to appreciate my post !!

Current Student
Joined: 29 May 2013
Posts: 124
Location: India
Concentration: Technology, Marketing
WE: Information Technology (Consulting)
Followers: 0

Kudos [?]: 13 [0], given: 42

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

29 Jun 2015, 06:59
if the same question were to be (X-3), then it would be positive slope 4/3.
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13976
Followers: 591

Kudos [?]: 167 [0], given: 0

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

31 Jul 2016, 22:33
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Status: Vice President
Joined: 16 May 2016
Posts: 14
Location: India
Concentration: Finance, Strategy
GMAT 1: 700 Q48 V38
GPA: 2
WE: Operations (Other)
Followers: 0

Kudos [?]: 5 [0], given: 115

Re: ABC is a right angle triangle, right angled at B Co ordinate [#permalink]

### Show Tags

20 Aug 2016, 09:56
mikemcgarry wrote:
Archit143 wrote:
ABC is a right angle triangle, right angled at B Co ordinates of A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively. Length of line AC is 5 units, x and y are greater than or equal to 0, the vertices of triangle ABC have coordinate values as shown, and the value of AC is as shown. If x = 3, then what could be the slope of line AC?

Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

A. -4/3
B. 2/3
C. 1
D. 4/3
E. 2

Apparently Archit added this very important note after I wrote my initial response to the problem. As they say, a picture is worth a thousand words, and a GMAT math problem that includes a diagram often will make little or no sense without the diagram. The GMAT never gives you a diagram unless there's some crucial piece of information you need from the diagram: this is a very important point to appreciate.

With this added piece of information, it's perfectly clear that the answer is (A). If Z > Y, then the line must move DOWN from (X,Z) to (X+3, Y). That's the definition of a negative slope. With the analysis above, we saw that the slope would have to be either -4/3 or +4/3. With the information from the diagram it's clear that the slope is -4/3, answer = (A).

Please let me know if anyone has any further questions.
Mike

The question is still wrong and confusing. The word RESPECTIVELY is not given any respect in this question.
A, B and C are (X,Z), (X,Y) and (X+3, Y) respectively
Pls note fig is drawn in 1st quadrant with Z > Y i.e point B is above A.

These statements do not hold true together.
_________________

Route to 700+

Re: ABC is a right angle triangle, right angled at B Co ordinate   [#permalink] 20 Aug 2016, 09:56
Similar topics Replies Last post
Similar
Topics:
7 There is a right-angled triangle yard ABC. A and B are where sprinkler 11 24 Apr 2016, 07:08
24 In the diagram to the right, triangle PQR has a right angle 15 28 Mar 2014, 23:17
8 ABC is a right angled triangle with BC=6cm and AB=8 cm 7 18 Jan 2014, 06:52
1 ABC is a right angled triangle, right angled at B and AD is the extern 1 19 Nov 2011, 08:19
21 In the diagram to the right, triangle PQR has a right angle 6 31 Oct 2007, 08:07
Display posts from previous: Sort by

# ABC is a right angle triangle, right angled at B Co ordinate

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.