It is currently 17 Oct 2017, 08:13

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Author Message
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [158], given: 12180

Show Tags

17 Dec 2012, 04:18
158
KUDOS
Expert's post
533
This post was
BOOKMARKED

Some 700+ GMAT quantitative questions will require you to know and understand the formulas for set theory, presenting three sets and asking various questions about them. There are two main formulas to solve questions involving three overlapping sets. Consider the diagram below:

FIRST FORMULA

$$Total = A + B + C - (sum \ of \ 2-group \ overlaps) + (all \ three) + Neither$$.

Let's see how this formula is derived.

When we add three groups A, B, and C some sections are counted more than once. For instance: sections d, e, and f are counted twice and section g thrice. Hence we need to subtract sections d, e, and f ONCE (to count section g only once) and subtract section g TWICE (again to count section g only once).

In the formula above, $$sum \ of \ 2-group \ overlaps=AnB+AnC+BnC$$, where AnB means intersection of A and B (sections d, and g), AnC means intersection of A and C (sections e, and g), and BnC means intersection of B and C (sections f, and g).

Now, when we subtract $$AnB$$ (d, and g), $$AnC$$ (e, and g), and $$BnC$$ (f, and g) from $$A+B+C$$, we are subtract sections d, e, and f ONCE BUT section g THREE TIMES (and we need to subtract section g only twice), therefor we should add only section g, which is intersection of A, B and C (AnBnC) again to get $$Total = A + B + C - (sum \ of \ 2-group \ overlaps) + (all \ three) + Neither$$.

SECOND FORMULA

$$Total = A + B + C - (sum \ of \ EXACTLY \ 2-group \ overlaps) - 2*(all \ three) + Neither$$.

Notice that EXACTLY (only) 2-group overlaps is not the same as 2-group overlaps:
Elements which are common only for A and B are in section d (so elements which are common ONLY for A and B refer to the elements which are in A and B but not in C);
Elements which are common only for A and C are in section e;
Elements which are common only for B and C are in section f.

Let's see how this formula is derived.

Again: when we add three groups A, B, and C some sections are counted more than once. For instance: sections d, e, and f are counted twice and section g thrice. Hence we need to subtract sections d, e, and f ONCE (to count section g only once) and subtract section g TWICE (again to count section g only once).

When we subtract $$sum \ of \ EXACTLY \ 2-group \ overlaps$$ from A+B+C we subtract sections d, e, and f once (fine) and next we need to subtract ONLY section g ($$AnBnC$$) twice. That's it.

Now, how this concept can be represented in GMAT problem?

Example 1:
Workers are grouped by their areas of expertise, and are placed on at least one team. 20 are on the marketing team, 30 are on the Sales team, and 40 are on the Vision team. 5 workers are on both the Marketing and Sales teams, 6 workers are on both the Sales and Vision teams, 9 workers are on both the Marketing and Vision teams, and 4 workers are on all three teams. How many workers are there in total?

Translating:
"are placed on at least one team": members of none =0;
"20 are on the marketing team": M=20;
"30 are on the Sales team": S=30;
"40 are on the Vision team": V=40;
"5 workers are on both the Marketing and Sales teams": MnS=5, note here that some from these 5 can be the members of Vision team as well, MnS is sections d an g on the diagram (assuming Marketing = A, Sales = B and Vision = C);
"6 workers are on both the Sales and Vision teams": SnV=6 (the same as above sections f an g);
"9 workers are on both the Marketing and Vision teams": MnV=9.
"4 workers are on all three teams": MnSnV=4, section 4.

Question: Total=?

Applying first formula as we have intersections of two groups and not the number of only (exactly) 2 group members:

$$Total=M+S+V-(MnS+MnV+SnV)+MnSnV+Neither=20+30+40-(5+6+9)+4+0=74$$.

Answer: 74. Discuss this question HERE.

Example 2:
Each of the 59 members in a high school class is required to sign up for a minimum of one and a maximum of three academic clubs. The three clubs to choose from are the poetry club, the history club, and the writing club. A total of 22 students sign up for the poetry club, 27 students for the history club, and 28 students for the writing club. If 6 students sign up for exactly two clubs, how many students sign up for all three clubs?

Translating:
"Each of the 59 members in a high school class is required to sign up for a minimum of one and a maximum of three academic clubs": Total=59, Neither=0 (as members are required to sign up for a minimum of one);
"27 students for the history club": H=27;
"28 students for the writing club": W=28;
"6 students sign up for exactly two clubs": (sum of EXACTLY 2-group overlaps)=6, so the sum of sections d, e, and f is given to be 6, (among these 6 students there are no one who is a member of ALL 3 clubs)

Question:: "How many students sign up for all three clubs?" --> $$PnHnW=g=?$$

Apply second formula: $$Total=P+H+W -(sum \ of \ EXACTLY \ 2-group \ overlaps)-2*PnHnW + Neither$$ --> $$59=22+27+28-6-2*x+0$$ --> $$x=6$$.

Answer: 6. Discuss this question HERE.

Example 3:
Of 20 Adults, 5 belong to A, 7 belong to B, and 9 belong to C. If 2 belong to all three organizations and 3 belong to exactly 2 organizations, how many belong to none of these organizations?

Translating:
"5 belong to A, 7 belong to B, and 9 belong to C": A=5, B=7, and C=9;
"2 belong to all three organizations": AnBnC=g=2;
"3 belong to exactly 2 organizations": (sum of EXACTLY 2-group overlaps)=3, so the sum of sections d, e, and f is given to be 3, (among these 3 adults there are no one who is a member of ALL 3 clubs)

Question:: Neither=?

Apply second formula: $$Total=A+B+C-(sum \ of \ EXACTLY \ 2-group \ overlaps)-2*AnBnC + Neither$$ --> $$20=5+7+9-3-2*2+Neither$$ --> $$Neither=6$$.

Answer: 6. Discuss this question HERE.

Example 4:
This semester, each of the 90 students in a certain class took at least one course from A, B, and C. If 60 students took A, 40 students took B, 20 students took C, and 5 students took all the three, how many students took exactly two courses?

Translating:
"90 students": Total=90;
"of the 90 students in a certain class took at least one course from A, B, and C": Neither=0;
"60 students took A, 40 students took B, 20 students took C": A=60, B=40, and C=20;
"5 students took all the three courses": AnBnC=g=5;

Question:: (sum of EXACTLY 2-group overlaps)=?

Apply second formula: $$Total=A+B+C-(sum \ of \ EXACTLY \ 2-group \ overlaps)-2*AnBnC + Neither$$ --> $$90=60+40+20-x-2*5+0$$ --> $$x=20$$.

Answer: 20. Discuss this question HERE.

Example 5:
In the city of San Durango, 60 people own cats, dogs, or rabbits. If 30 people owned cats, 40 owned dogs, 10 owned rabbits, and 12 owned exactly two of the three types of pet, how many people owned all three?

Translating:
"60 people own cats, dogs, or rabbits": Total=60; and Neither=0;
"30 people owned cats, 40 owned dogs, 10 owned rabbits": A=30, B=40, and C=10;
"12 owned exactly two of the three types of pet": (sum of EXACTLY 2-group overlaps)=12;

Question:: AnBnC=g=?

Apply second formula: $$Total=A+B+C-(sum \ of \ EXACTLY \ 2-group \ overlaps)-2*AnBnC + Neither$$ --> $$60=30+40+10-12-2*x+0$$ --> $$x=4$$.

Answer: 4. Discuss this question HERE.

Example 6:
When Professor Wang looked at the rosters for this term's classes, she saw that the roster for her economics class (E) had 26 names, the roster for her marketing class (M) had 28, and the roster for her statistics class (S) had 18. When she compared the rosters, she saw that E and M had 9 names in common, E and S had 7, and M and S had 10. She also saw that 4 names were on all 3 rosters. If the rosters for Professor Wang's 3 classes are combined with no student's name listed more than once, how many names will be on the combined roster?

Translating:
"E and M had 9 names in common, E and S had 7, and M and S had 10": EnM=9, EnS=7, and MnS=10;
"4 names were on all 3 rosters": EnMnS=g=4;

Question:: Total=?

Apply first formula: $$Total = A + B + C - (sum \ of \ 2-group \ overlaps) + (all \ three) + Neither$$ --> $$Total=26+28+18-(9+7+10)+4+0$$ --> $$Total=50$$.

Answer: 50. Discuss this question HERE.

Example 7:
There are 50 employees in the office of ABC Company. Of these, 22 have taken an accounting course, 15 have taken a course in finance and 14 have taken a marketing course. Nine of the employees have taken exactly two of the courses and 1 employee has taken all three of the courses. How many of the 50 employees have taken none of the courses?

Translating:
"There are 50 employees in the office of ABC Company": Total=50;
"22 have taken an accounting course, 15 have taken a course in finance and 14 have taken a marketing course"; A=22, B=15, and C=14;
"Nine of the employees have taken exactly two of the courses": (sum of EXACTLY 2-group overlaps)=9;
"1 employee has taken all three of the courses": AnBnC=g=1;

Question:: None=?

Apply second formula: $$Total=A+B+C-(sum \ of \ EXACTLY \ 2-group \ overlaps)-2*AnBnC + None$$ --> $$50=22+15+14-9-2*1+None$$ --> $$None=10$$.

Answer: 10. Discuss this question HERE.

Example 8 (hard):
In a consumer survey, 85% of those surveyed liked at least one of three products: 1, 2, and 3. 50% of those asked liked product 1, 30% liked product 2, and 20% liked product 3. If 5% of the people in the survey liked all three of the products, what percentage of the survey participants liked more than one of the three products?

Translating:
"85% of those surveyed liked at least one of three products: 1, 2, and 3": Total=100%. Also, since 85% of those surveyed liked at least one of three products then 15% liked none of three products, thus None=15%;
"5% of the people in the survey liked all three of the products": AnBnC=g=5%;

Question:: what percentage of the survey participants liked more than one of the three products?

Apply second formula:
Total = {liked product 1} + {liked product 2} + {liked product 3} - {liked exactly two products} - 2*{liked exactly three product} + {liked none of three products}

$$100=50+30+20-x-2*5+15$$ --> $$x=5%$$, so 5% liked exactly two products. More than one product liked those who liked exactly two products, (5%) plus those who liked exactly three products (5%), so 5+5=10% liked more than one product.

Answer: 10%. Discuss this question HERE.

Example 9 (hard):
In a class of 50 students, 20 play Hockey, 15 play Cricket and 11 play Football. 7 play both Hockey and Cricket, 4 play Cricket and Football and 5 play Hockey and football. If 18 students do not play any of these given sports, how many students play exactly two of these sports?

Translating:
"In a class of 50 students...": Total=50;
"20 play Hockey, 15 play Cricket and 11 play Football": H=20, C=15, and F=11;
"7 play both Hockey and Cricket, 4 play Cricket and Football and 5 play Hockey and football": HnC=7, CnF=4, and HnF=5. Notice that "7 play both Hockey and Cricket" does not mean that out of those 7, some does not play Football too. The same for Cricket/Football and Hockey/Football;
"18 students do not play any of these given sports": Neither=18.

Question:: how many students play exactly two of these sports?

Apply first formula:

{Total}={Hockey}+{Cricket}+{Football}-{HC+CH+HF}+{All three}+{Neither}

50=20+15+11-(7+4+5)+{All three}+18 --> {All three}=2;

Those who play ONLY Hockey and Cricket are 7-2=5;
Those who play ONLY Cricket and Football are 4-2=2;
Those who play ONLY Hockey and Football are 5-2=3;

Hence, 5+2+3=10 students play exactly two of these sports.

Answer: 10. Discuss this question HERE.

Example 10 (hard DS question on three overlapping sets):
A student has decided to take GMAT and TOEFL examinations, for which he has allocated a certain number of days for preparation. On any given day, he does not prepare for both GMAT and TOEFL. How many days did he allocate for the preparation?

(1) He did not prepare for GMAT on 10 days and for TOEFL on 12 days.
(2) He prepared for either GMAT or TOEFL on 14 days

We have: {Total} = {GMAT } + {TOEFL} - {Both} + {Neither}. Since we are told that "on any given day, he does not prepare for both GMAT and TOEFL", then {Both} = 0, so {Total} = {GMAT } + {TOEFL} + {Neither}. We need to find {Total}

(1) He did not prepare for GMAT on 10 days and for TOEFL on 12 days --> {Total} - {GMAT } = 10 and {Total} - {TOEFL} =12. Not sufficient.
(2) He prepared for either GMAT or TOEFL on 14 days --> {GMAT } + {TOEFL} = 14. Not sufficient.

(1)+(2) We have three linear equations ({Total} - {GMAT } = 10, {Total} - {TOEFL} =12 and {GMAT } + {TOEFL} = 14) with three unknowns ({Total}, {GMAT }, and {TOEFL}), so we can solve for all of them. Sufficient.

Just to illustrate. Solving gives:
{Total} = 18 - he allocate total of 18 days for the preparation;
{GMAT } = 8 - he prepared for the GMAT on 8 days;
{TOEFL} = 6 - he prepared for the TOEFL on 6 days;
{Neither} = 4 - he prepared for neither of them on 4 days.

Answer: C. Discuss this question HERE.

Example 11 (disguised three overlapping sets problem):
Three people each took 5 tests. If the ranges of their scores in the 5 practice tests were 17, 28 and 35, what is the minimum possible range in scores of the three test-takers?
A. 17
B. 28
C. 35
D. 45
E. 80

Consider this problem to be an overlapping sets problem:
# of people in group A is 17;
# of people in group B is 28;
# of people in group C is 35;

What is the minimum # of total people possible in all 3 groups? Clearly if two smaller groups A and B are subsets of bigger group C (so if all people who are in A are also in C and all people who are in B are also in C), then total # of people in all 3 groups will be 35. Minimum # of total people cannot possibly be less than 35 since there are already 35 people in group C.

P.S. Notice that max range for the original question is not limited when the max # of people in all 3 groups for revised question is 17+28+35 (in case there is 0 overlap between the 3 groups).

Answer: C. Discuss this question HERE.

____________________________________________________________________________________________________________
For more questions on overlapping sets check our Question Banks
Data Sufficiency Questions on Overlapping Sets
Problem Solving Questions on Overlapping Sets

[Reveal] Spoiler:
Attachment:

Overlapping sets.png [ 48.39 KiB | Viewed 214371 times ]

_________________

Kudos [?]: 128548 [158], given: 12180

Moderator
Joined: 01 Sep 2010
Posts: 3355

Kudos [?]: 9041 [21], given: 1152

Show Tags

17 Dec 2012, 05:09
21
KUDOS
3
This post was
BOOKMARKED
This was excatly what I needed to tackle advance OS, eventhough, through practice and observation and analysis i came to the same result.

however, I post that highlighting all in the same place is awesome

thanks Bunuel

Attachments

ADVANCED OVERLAPPING SETS PROBLEMS.pdf [408.4 KiB]

_________________

Kudos [?]: 9041 [21], given: 1152

BSchool Forum Moderator
Joined: 27 Aug 2012
Posts: 1188

Kudos [?]: 1926 [3], given: 152

Show Tags

20 Dec 2012, 10:41
3
KUDOS
Bunuel,
Needless to say that you're awesome through your Knowledge sharing and posts... Kudos man.

Very helpful post it'll be for the Club I believe.

@Carcaas: Thanks for making the offline version..
_________________

Kudos [?]: 1926 [3], given: 152

Intern
Joined: 07 Apr 2012
Posts: 33

Kudos [?]: 11 [0], given: 10

Concentration: Real Estate, Entrepreneurship
GMAT 1: 690 Q44 V41
WE: General Management (Real Estate)

Show Tags

21 Dec 2012, 11:07
I'm sorry, can someone explain the distinction on when to use which Formula. What are the factors that would define the use of Formula 1 vs Formula 2, and vice versa?

Thanks in advance, and appreciate the great write up!

Kudos [?]: 11 [0], given: 10

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [3], given: 12180

Show Tags

23 Dec 2012, 07:08
3
KUDOS
Expert's post
saidba wrote:
I'm sorry, can someone explain the distinction on when to use which Formula. What are the factors that would define the use of Formula 1 vs Formula 2, and vice versa?

Thanks in advance, and appreciate the great write up!

_________________

Kudos [?]: 128548 [3], given: 12180

Manager
Joined: 14 Nov 2011
Posts: 145

Kudos [?]: 20 [2], given: 103

Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)

Show Tags

15 Jun 2013, 05:48
2
KUDOS
Hi Bunnel,

Can we add one more formula here:

True # of objects = (total in exactly 1 group) + (total in exactly 2 groups) + (total in exactly 3 groups)

Kudos [?]: 20 [2], given: 103

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [2], given: 12180

Show Tags

11 Jul 2013, 00:05
2
KUDOS
Expert's post
1
This post was
BOOKMARKED
Bumping for review*.

*New project from GMAT Club!!! Check HERE

_________________

Kudos [?]: 128548 [2], given: 12180

Intern
Status: preparing for the GMAT
Joined: 16 Jul 2013
Posts: 38

Kudos [?]: 8 [0], given: 5

Concentration: Technology, Entrepreneurship
GMAT Date: 10-15-2013
GPA: 3.53

Show Tags

27 Sep 2013, 14:19
Hey Bunuel

the two formulas are for problems with 3 groups, but what if Im dealing with 2 groups problems?

do I just need to omit the "all three" part in the formulas???

_________________

لا الله الا الله, محمد رسول الله

You never fail until you stop trying ,,,

Kudos [?]: 8 [0], given: 5

Intern
Joined: 21 Jul 2013
Posts: 13

Kudos [?]: 5 [0], given: 46

Concentration: Entrepreneurship, Marketing
GPA: 3.64
WE: Law (Law)

Show Tags

20 Oct 2013, 16:14
Brilliant. Even though I can always solve this kind of problem from scratch, I take more than 2 minutes to do so. How important is it to memorize these formulas?

Kudos [?]: 5 [0], given: 46

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [3], given: 12180

Show Tags

20 Oct 2013, 23:06
3
KUDOS
Expert's post
Theeraya wrote:
Brilliant. Even though I can always solve this kind of problem from scratch, I take more than 2 minutes to do so. How important is it to memorize these formulas?

Strange question.

It's important to understand this formulas but I'd advise to memorize them too.
_________________

Kudos [?]: 128548 [3], given: 12180

Intern
Joined: 21 Jul 2013
Posts: 13

Kudos [?]: 5 [1], given: 46

Concentration: Entrepreneurship, Marketing
GPA: 3.64
WE: Law (Law)

Show Tags

20 Oct 2013, 23:56
1
KUDOS
Bunuel wrote:
Theeraya wrote:
Brilliant. Even though I can always solve this kind of problem from scratch, I take more than 2 minutes to do so. How important is it to memorize these formulas?

Strange question.

It's important to understand this formulas but I'd advise to memorize them too.

Thanks. Haha. I didn't realize it was a strange question. I have limited time to study so I prefer to memorize things as little as possible. I guess these formulas are worth memorizing.

Kudos [?]: 5 [1], given: 46

Intern
Joined: 25 Aug 2013
Posts: 14

Kudos [?]: 17 [0], given: 5

Location: India
Concentration: Finance, Marketing
GPA: 2.94
WE: Engineering (Manufacturing)

Show Tags

29 Oct 2013, 15:33
I am trying to understand the formula rather than actually memorizing it but I'm stuck when Bunuel says "Sum of 2-group overlaps" vs. "Sum of exactly 2-group overlaps". He did try to explain the difference but somehow I feel like the 2nd formula is the only correct formula.
Maybe if someone could just explain when to use which formula I might be able to understand or memorize it better.
Any help would be greatly appreciated. Thanks

Kudos [?]: 17 [0], given: 5

Intern
Status: preparing for the GMAT
Joined: 16 Jul 2013
Posts: 38

Kudos [?]: 8 [0], given: 5

Concentration: Technology, Entrepreneurship
GMAT Date: 10-15-2013
GPA: 3.53

Show Tags

29 Oct 2013, 23:13
jabgars wrote:
I am trying to understand the formula rather than actually memorizing it but I'm stuck when Bunuel says "Sum of 2-group overlaps" vs. "Sum of exactly 2-group overlaps". He did try to explain the difference but somehow I feel like the 2nd formula is the only correct formula.
Maybe if someone could just explain when to use which formula I might be able to understand or memorize it better.
Any help would be greatly appreciated. Thanks

use "exactly 2" formula only when the question gives you exactly 2-group overlaps, otherwise use the first formula.

this becomes really confusing when the question is asking for the sum of 2-group overlaps, and the question does not mention whether it is exactly 2 or not. In such problems I use the exactly 2-group formula, I do not know why, but all the problem of this type are solved by the second formula.

maybe someone can explain?
_________________

لا الله الا الله, محمد رسول الله

You never fail until you stop trying ,,,

Kudos [?]: 8 [0], given: 5

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [1], given: 12180

Show Tags

30 Oct 2013, 00:37
1
KUDOS
Expert's post
jabgars wrote:
I am trying to understand the formula rather than actually memorizing it but I'm stuck when Bunuel says "Sum of 2-group overlaps" vs. "Sum of exactly 2-group overlaps". He did try to explain the difference but somehow I feel like the 2nd formula is the only correct formula.
Maybe if someone could just explain when to use which formula I might be able to understand or memorize it better.
Any help would be greatly appreciated. Thanks

Please read the post carefully. There are problems solved by the first formula.
_________________

Kudos [?]: 128548 [1], given: 12180

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [0], given: 12180

Show Tags

30 Oct 2013, 00:38
Aldossari wrote:
jabgars wrote:
I am trying to understand the formula rather than actually memorizing it but I'm stuck when Bunuel says "Sum of 2-group overlaps" vs. "Sum of exactly 2-group overlaps". He did try to explain the difference but somehow I feel like the 2nd formula is the only correct formula.
Maybe if someone could just explain when to use which formula I might be able to understand or memorize it better.
Any help would be greatly appreciated. Thanks

use "exactly 2" formula only when the question gives you exactly 2-group overlaps, otherwise use the first formula.

this becomes really confusing when the question is asking for the sum of 2-group overlaps, and the question does not mention whether it is exactly 2 or not. In such problems I use the exactly 2-group formula, I do not know why, but all the problem of this type are solved by the second formula.

maybe someone can explain?

Really don't know what can I add to the post. Maybe you should practice more.

DS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=45
PS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=65
_________________

Kudos [?]: 128548 [0], given: 12180

Intern
Joined: 11 Oct 2013
Posts: 18

Kudos [?]: 29 [0], given: 34

Location: United Kingdom
GMAT 1: 490 Q32 V25
GPA: 3.9
WE: Other (Other)

Show Tags

17 Dec 2013, 20:11
Dear Bunuel,
huge thanks for this post:
I'm trying to find difference between two given formulas in order to apply them correctly.

Am I right to say that formula #1 applicable to GENERAL CASES
FIRST FORMULA

$$Total = A + B + C - (sum \ of \ 2-group \ overlaps) + (all \ three) + Neither$$.

while formula#2 might be used ONLY when in premise says something as belong/ include ONLY to two groups/categories?
SECOND FORMULA

$$Total = A + B + C - (sum \ of \ EXACTLY \ 2-group \ overlaps) - 2*(all \ three) + Neither$$.

Thanks a lot for help-you are my hero!
_________________

Good things come to those who wait… greater things come to those who get off their ass and do anything to make it happen...

Kudos [?]: 29 [0], given: 34

Math Expert
Joined: 02 Sep 2009
Posts: 41869

Kudos [?]: 128548 [2], given: 12180

Show Tags

18 Dec 2013, 01:52
2
KUDOS
Expert's post
3111987 wrote:
Dear Bunuel,
huge thanks for this post:
I'm trying to find difference between two given formulas in order to apply them correctly.

Am I right to say that formula #1 applicable to GENERAL CASES
FIRST FORMULA

$$Total = A + B + C - (sum \ of \ 2-group \ overlaps) + (all \ three) + Neither$$.

while formula#2 might be used ONLY when in premise says something as belong/ include ONLY to two groups/categories?
SECOND FORMULA

$$Total = A + B + C - (sum \ of \ EXACTLY \ 2-group \ overlaps) - 2*(all \ three) + Neither$$.

Thanks a lot for help-you are my hero!

Yes, you can generalize this way. Check examples in my post to verify.
_________________

Kudos [?]: 128548 [2], given: 12180

Intern
Joined: 14 Mar 2014
Posts: 1

Kudos [?]: 1 [1], given: 0

Show Tags

14 Mar 2014, 08:58
1
KUDOS
Signed up just to comment.

Flawless. Works like a charm. Too good to be true!!!

Posted from my mobile device

Kudos [?]: 1 [1], given: 0

Intern
Joined: 04 Feb 2014
Posts: 8

Kudos [?]: 6 [0], given: 171

Location: United States
Concentration: Technology, Social Entrepreneurship
GPA: 3.75

Show Tags

14 Jul 2014, 22:53
Hi Bunuel,

I am not able to understand first formula. As you mentioned "When we add three groups A, B, and C some sections are counted more than once. For instance: sections d, e, and f are counted twice and section g thrice." but aren't we counting g six times? Please explain as I am very much confused with this. Thanks.

Regards,
Ashish

Kudos [?]: 6 [0], given: 171

Senior Manager
Joined: 28 Apr 2014
Posts: 273

Kudos [?]: 40 [0], given: 46

Show Tags

15 Jul 2014, 01:13
Bunuel wrote:
Theeraya wrote:
Brilliant. Even though I can always solve this kind of problem from scratch, I take more than 2 minutes to do so. How important is it to memorize these formulas?

Strange question.

It's important to understand this formulas but I'd advise to memorize them too.

Adding to the excellent post of Bunuel , I think that memorising this formula is not required if one has the clarity of the concept and the figure in mind. I would rather devote my limited memory to learn geometry formulae which can't be derived easily but then to each his own

Kudos [?]: 40 [0], given: 46

Go to page    1   2    Next  [ 33 posts ]

Display posts from previous: Sort by