It is currently 19 Oct 2017, 11:39

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Another fresh question on 2 Part- Quadratic function

Author Message
e-GMAT Representative
Joined: 02 Nov 2011
Posts: 2311

Kudos [?]: 9037 [1], given: 335

### Show Tags

25 Jan 2013, 04:56
1
KUDOS
Expert's post
1
This post was
BOOKMARKED
Try yet another 2 part question- fresh from the e-GMAT bakery!

A function f(x, y) is such that $$f(x,y)=3x^2-2xy+y^2+4$$. Select one value for x, & one value for y such that given information implies that f(x, y) = 8. Make only two selections, one in each column.

This is a representative question of OG13/# 38. Want to view similar 2 part questions with an interactive audio visual solution? Register here at e-GMAT.

-Shalabh

Last edited by egmat on 02 Feb 2013, 23:46, edited 1 time in total.

Kudos [?]: 9037 [1], given: 335

Current Student
Joined: 27 Jun 2012
Posts: 405

Kudos [?]: 932 [4], given: 184

Concentration: Strategy, Finance

### Show Tags

25 Jan 2013, 17:23
4
KUDOS
Answer: $$x = 1$$ and $$y= 1-\sqrt{2}$$

I used back-solving method to solve this problem by substituting values for x in following order $$(0, 1, -1, 1-\sqrt{2})$$

Given that,
$$f(x,y)=3x^2-2xy+y^2+4=8$$
i.e. $$3x^2-2xy+y^2=4$$ -- To be proved

Substituting $$x=0$$ gives $$y=\pm2$$ which is not in the answer list.

Substitute $$x=1$$
$$3x^2-2xy+y^2=4$$
$$3*1^2-2(1)y+y^2=4$$
$$3-2y+y^2=4$$
$$y^2-2y-1=0$$

As we know $$x = [-b\pm\sqrt{b^2-4ac}]/2a$$ are roots for $$ax^2+bx+c=0$$

$$y= [-(-2)\pm\sqrt{(-2)^2-4(1)(-1)}]/2(1)=[2\pm\sqrt{(8)}]/2=1-\sqrt{2}$$

Hence Answer: $$x = 1$$ and $$y= 1-\sqrt{2}$$
_________________

Thanks,
Prashant Ponde

Tough 700+ Level RCs: Passage1 | Passage2 | Passage3 | Passage4 | Passage5 | Passage6 | Passage7
VOTE GMAT Practice Tests: Vote Here
PowerScore CR Bible - Official Guide 13 Questions Set Mapped: Click here

Kudos [?]: 932 [4], given: 184

VP
Joined: 09 Jun 2010
Posts: 1403

Kudos [?]: 158 [0], given: 916

### Show Tags

29 Jan 2013, 00:14
how to pick the number ? picking number is time consuming.

any tip, trick here,
_________________

visit my facebook to help me.
on facebook, my name is: thang thang thang

Kudos [?]: 158 [0], given: 916

e-GMAT Representative
Joined: 02 Nov 2011
Posts: 2311

Kudos [?]: 9037 [1], given: 335

### Show Tags

01 Feb 2013, 02:48
1
KUDOS
Expert's post
thangvietnam wrote:
how to pick the number ? picking number is time consuming.

any tip, trick here,

Hi,

When we look at $$f(x,y)=3x^2-2xy+y^2+4$$ and then at the options, we find that plugging values is the best way to approach this question.
There are 3 things that should be keptp in mind while picking option values.

1.Pick integers first. They are easy to work on.
There are 3 values in the option list, which are integers.

2.Pick ‘0’ first. This will eliminate one variable completely for compuation.

3.What to choose first; x or y? One should always observe right hand side of the function. If number of terms of x is more than the number of terms of y, then plug in the option value in x first, and vice versa.

We choose the values for x in the order of 0, 1, and -1 to plug in.

Now, we plug in the value of f(x, y) =8, & x=0 in the equation, and we get,

$$8=3.0^2-2.0.y+y^2+4$$
$$8=y^2+4$$
$$4=y^2$$
y= ±2

This means for x=0, y is either 2 or -2. There is no such option available for values: 2 or-2 , hence these pair of values cannot be correct.

Now, we should try x=1. You may follow PraPon’s solution for x=1. He has done it correctly.

Hope it helps!

-Shalabh
_________________

| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com

Kudos [?]: 9037 [1], given: 335

Intern
Joined: 19 May 2012
Posts: 34

Kudos [?]: 9 [0], given: 0

Location: India
GMAT Date: 03-03-2014
WE: Information Technology (Computer Software)

### Show Tags

02 Mar 2013, 08:09
x=1,
y=1-root(2)
_________________

Thanks
crazy4priya
GMATPrep 1 710/Q49/V38
GMATPrep 2 690/Q49/V34
Veritas Prep 700/Q50/V36/IR5
MGMT Test 1 700/Q51/V35/IR3

Kudos [?]: 9 [0], given: 0

Intern
Joined: 11 May 2013
Posts: 1

Kudos [?]: 5 [0], given: 0

### Show Tags

10 Nov 2013, 13:15
$$f(x,y) = 3x^2 - 2xy + y^2 + 4 = 2x^2 + (x-y)^2 + 4$$
So, $$f(x,y) = 8$$ if and only if $$2x^2 + (x-y)^2 = 4$$ or $$x^2 + ((x-y)/sqrt 2)^2 = 2$$

Now that you have formulated the expression this way, it is very easy to see that x=1 and y=1-sqrt(2) is the solution.

This is much faster than plugging in values.

Kudos [?]: 5 [0], given: 0

Re: Another fresh question on 2 Part- Quadratic function   [#permalink] 10 Nov 2013, 13:15
Display posts from previous: Sort by

# Another fresh question on 2 Part- Quadratic function

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.