GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 15 Oct 2019, 16:42

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Arc AED above is a semicircle. EC is the height to the base AD. The ar

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Intern
Joined: 30 May 2014
Posts: 2
Concentration: Finance, Entrepreneurship
GMAT 1: 600 Q47 V27
GPA: 3.47
Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

27 Oct 2014, 09:17
2
7
00:00

Difficulty:

75% (hard)

Question Stats:

63% (03:02) correct 37% (03:30) wrong based on 147 sessions

HideShow timer Statistics

Attachment:

T8910x.png [ 7.7 KiB | Viewed 4759 times ]
Arc AED above is a semicircle. EC is the height to the base AD. The area of triangle AEC is 96. If CE=12, what is the area of triangle CDE?

A. 48
B. 54
C. 72
D. 84
E. 150
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1750
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

27 Oct 2014, 20:02
15
5
Answer = B = 54

Area $$\triangle ECA = 96 = \frac{1}{2} * AC * 12$$

AC = 16

Arc AED is a semicircle means AD is the diameter of the circle

EA & ED are touching the end points of diameter, which means $$\angle AED = 90^{\circ}$$ (This is by property of circle)

Refer diagram below which shows various angles of both the triangles

Attachment:

T8910x.png [ 22.56 KiB | Viewed 4667 times ]

Note that $$\triangle ECA$$ and $$\triangle DCE$$ are similar triangles.

Now that they are similar, then there corresponding sides are also proportional

$$\triangle$$ ECA Base = 16 & Height = 12

$$\triangle$$ DCE Base = 12; so Height = $$12 * \frac{12}{16} = 9$$

Area $$\triangle DCE = \frac{1}{2} * 12 * 9 = 54$$
_________________
Kindly press "+1 Kudos" to appreciate
General Discussion
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1750
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

27 Oct 2014, 20:09
2
minhphammr wrote:
Arc AED above is a semicircle. EC is the height to the base AD. The area of triangle AEC is 96. If CE=12, what is the area of triangle CDE?
A. 48
B. 54
C. 72
D. 84
E. 150

For detailed explanation, above post can be referred.

Shortcut:

Area AEC = 96; so AC = 16

Area shaded region = $$96 * \frac{12}{16} = 54$$

_________________
Kindly press "+1 Kudos" to appreciate
Manager
Joined: 21 Aug 2014
Posts: 152
Location: United States
Concentration: Other, Operations
GMAT 1: 700 Q47 V40
GMAT 2: 690 Q44 V40
WE: Science (Pharmaceuticals and Biotech)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

17 Dec 2014, 14:41
PareshGmat wrote:
Answer = B = 54

Area $$\triangle ECA = 96 = \frac{1}{2} * AC * 12$$

AC = 16

Arc AED is a semicircle means AD is the diameter of the circle

EA & ED are touching the end points of diameter, which means $$\angle AED = 90^{\circ}$$ (This is by property of circle)

Refer diagram below which shows various angles of both the triangles

Attachment:
T8910x.png

Note that $$\triangle ECA$$ and $$\triangle DCE$$ are similar triangles.

Now that they are similar, then there corresponding sides are also proportional

$$\triangle$$ ECA Base = 16 & Height = 12

$$\triangle$$ DCE Base = 12; so Height = $$12 * \frac{12}{16} = 9$$

Area $$\triangle DCE = \frac{1}{2} * 12 * 9 = 54$$

Is it a general property that both triangles are going to be similar?
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1750
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

17 Dec 2014, 19:13
1
nachobioteck wrote:
PareshGmat wrote:
Answer = B = 54

Area $$\triangle ECA = 96 = \frac{1}{2} * AC * 12$$

AC = 16

Arc AED is a semicircle means AD is the diameter of the circle

EA & ED are touching the end points of diameter, which means $$\angle AED = 90^{\circ}$$ (This is by property of circle)

Refer diagram below which shows various angles of both the triangles

Attachment:
T8910x.png

Note that $$\triangle ECA$$ and $$\triangle DCE$$ are similar triangles.

Now that they are similar, then there corresponding sides are also proportional

$$\triangle$$ ECA Base = 16 & Height = 12

$$\triangle$$ DCE Base = 12; so Height = $$12 * \frac{12}{16} = 9$$

Area $$\triangle DCE = \frac{1}{2} * 12 * 9 = 54$$

Is it a general property that both triangles are going to be similar?

When corresponding angles are same (irrespective of dimensions), both triangles are similar

In this case, YES (Refer the diagram above for angle breakup)
_________________
Kindly press "+1 Kudos" to appreciate
Director
Joined: 25 Apr 2012
Posts: 661
Location: India
GPA: 3.21
WE: Business Development (Other)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

17 Dec 2014, 21:31
minhphammr wrote:
Attachment:
T8910x.png
Arc AED above is a semicircle. EC is the height to the base AD. The area of triangle AEC is 96. If CE=12, what is the area of triangle CDE?

A. 48
B. 54
C. 72
D. 84
E. 150

The 2 triangles are similar and some relations can come handy

and CE^2=AC*CD

we know CE=12 and Area of Triangle AEC=96 so AC=96*2/12 or AC =16

So CD=CE^2/AC or CD=9

Then area of triangle CDE =1/2*9*12=54
_________________

“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9701
Location: Pune, India
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

18 Dec 2014, 04:39
nachobioteck wrote:
Is it a general property that both triangles are going to be similar?

This post gives you some figures which should make you think about similar triangles. Check them out.
http://www.veritasprep.com/blog/2014/03 ... -the-gmat/
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Senior Manager
Joined: 17 Sep 2013
Posts: 322
Concentration: Strategy, General Management
GMAT 1: 730 Q51 V38
WE: Analyst (Consulting)
Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

18 Dec 2014, 05:01
WoundedTiger wrote:
The 2 triangles are similar and some relations can come handy

I doubt the above 2 are true...the dimension of LHS is m while of RHS is m^2
_________________
Appreciate the efforts...KUDOS for all
Don't let an extra chromosome get you down..
Manager
Joined: 04 Oct 2013
Posts: 150
Location: India
GMAT Date: 05-23-2015
GPA: 3.45
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

19 Dec 2014, 05:52
Arc AED above is a semicircle. EC is the height to the base AD. The area of triangle AEC is 96. If CE=12, what is the area of triangle CDE?

A. 48
B. 54
C. 72
D. 84
E. 150

The area of triangle AEC is $$96 = \frac{1}{2}(AC)*(CE)$$ or $$AC = \frac{(96*2)}{12}=16$$

$$(EC)^2=AC*CD$$

$$CD= (12)^2/16=9$$

Area of the triangle CDE = $$\frac{1}{2}(EC)*(CD)$$ = $$\frac{(12*9)}{2}=54$$

Director
Joined: 13 Mar 2017
Posts: 728
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

06 Sep 2017, 01:01
minhphammr wrote:
Attachment:
T8910x.png
Arc AED above is a semicircle. EC is the height to the base AD. The area of triangle AEC is 96. If CE=12, what is the area of triangle CDE?

A. 48
B. 54
C. 72
D. 84
E. 150

In triangle ACE , 1/2*AC* CE = 96 -> AC = 16

Now triangle CED ~ triangle CAE
CE/CD = CA/CE
CE^2 = CA * CD (If you can remember this property of the right angles triangle, it will be highly helpful to solve the problem in a quick manner.)
12^2 = 16 * CD
CD = 9

Area CAE = 1/2 * 9 * 12 = 54

_________________
CAT 2017 (98.95) & 2018 (98.91) : 99th percentiler
UPSC Aspirants : Get my app UPSC Important News Reader from Play store.

MBA Social Network : WebMaggu

Appreciate by Clicking +1 Kudos ( Lets be more generous friends.)

What I believe is : "Nothing is Impossible, Even Impossible says I'm Possible" : "Stay Hungry, Stay Foolish".
Intern
Joined: 27 Mar 2019
Posts: 12
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

14 Jul 2019, 06:20
Hi everyone! Does anybody know, whether figures in Problem Solving part are drawn on a scale?
I have seen explanation of this task in Economist tutor, it is written there almost of the figures are on scale (if there is no some special signs like 'figure above is not on scale') and they uses a strategy calles 'ballpark', explaning this answer.

So, could we trust scale of figures in questions like this? Thanks!
Math Expert
Joined: 02 Sep 2009
Posts: 58340
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

14 Jul 2019, 06:22
plk wrote:
Hi everyone! Does anybody know, whether figures in Problem Solving part are drawn on a scale?
I have seen explanation of this task in Economist tutor, it is written there almost of the figures are on scale (if there is no some special signs like 'figure above is not on scale') and they uses a strategy calles 'ballpark', explaning this answer.

So, could we trust scale of figures in questions like this? Thanks!

Problem Solving
Figures: All figures accompanying problem solving questions are intended to provide information useful in solving the problems. Figures are drawn as accurately as possible. Exceptions will be clearly noted. Lines shown as straight are straight, and lines that appear jagged are also straight. The positions of points, angles, regions, etc., exist in the order shown, and angle measures are greater than zero. All figures lie in a plane unless otherwise indicated.

Data Sufficiency:
Figures:
• Figures conform to the information given in the question, but will not necessarily conform to the additional information given in statements (1) and (2).
• Lines shown as straight are straight, and lines that appear jagged are also straight.
• The positions of points, angles, regions, etc., exist in the order shown, and angle measures are greater than zero.
• All figures lie in a plane unless otherwise indicated.

Hope it helps.
_________________
Intern
Joined: 27 Mar 2019
Posts: 12
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

14 Jul 2019, 06:27
Bunuel wrote:
plk wrote:
Hi everyone! Does anybody know, whether figures in Problem Solving part are drawn on a scale?
I have seen explanation of this task in Economist tutor, it is written there almost of the figures are on scale (if there is no some special signs like 'figure above is not on scale') and they uses a strategy calles 'ballpark', explaning this answer.

So, could we trust scale of figures in questions like this? Thanks!

Problem Solving
Figures: All figures accompanying problem solving questions are intended to provide information useful in solving the problems. Figures are drawn as accurately as possible. Exceptions will be clearly noted. Lines shown as straight are straight, and lines that appear jagged are also straight. The positions of points, angles, regions, etc., exist in the order shown, and angle measures are greater than zero. All figures lie in a plane unless otherwise indicated.

Data Sufficiency:
Figures:
• Figures conform to the information given in the question, but will not necessarily conform to the additional information given in statements (1) and (2).
• Lines shown as straight are straight, and lines that appear jagged are also straight.
• The positions of points, angles, regions, etc., exist in the order shown, and angle measures are greater than zero.
• All figures lie in a plane unless otherwise indicated.

Hope it helps.

Thank you very much!
Senior Manager
Joined: 07 Mar 2019
Posts: 317
Location: India
GMAT 1: 580 Q43 V27
WE: Sales (Energy and Utilities)
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar  [#permalink]

Show Tags

14 Jul 2019, 10:31
1
Solved through a longer method:
Since ArcAED is a semicircle ∆AED is right angled triangle at ∠E.
∴ AD^2 = AE^2 + ED^2
And AD^2 = (AC + CD)^2
= AC^2 + CD^2 + 2*AC*CD → Eqn ①
AE^2 + ED^2 = EC^2 + AC^2 + EC^2 + CD^2 → Eqn ②
Now Equating Eqn ① & ② we have
AC^2 + CD^2 + 2*AC*CD = EC^2 + AC^2 + EC^2 + CD^2
Solving gives us
2*AC*CD = 2*EC^2 → Eqn ③
Also we have Area ∆AEC = 96 and EC = 12,
½*EC*AC = 96
 AC = (2*96)/12 = 16 → Eqn ④
Now from Eqn ③ & ④
CD = ((12)^2)/16 = 9 → Eqn ⑤
Now Area ∆CDE = ½*EC*CD and using Eqn ⑤
 = ½*12*9
 = 54
_________________
Ephemeral Epiphany..!

GMATPREP1 590(Q48,V23) March 6, 2019
GMATPREP2 610(Q44,V29) June 10, 2019
GMATPREPSoft1 680(Q48,V35) June 26, 2019
Re: Arc AED above is a semicircle. EC is the height to the base AD. The ar   [#permalink] 14 Jul 2019, 10:31
Display posts from previous: Sort by

Arc AED above is a semicircle. EC is the height to the base AD. The ar

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne