It is currently 21 Nov 2017, 05:26

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Baker's Dozen

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [22], given: 12391

### Show Tags

08 Mar 2012, 13:27
22
KUDOS
Expert's post
159
This post was
BOOKMARKED
I'm posting the next set of medium/hard PS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers. Good luck!

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Solution: baker-s-dozen-128782-20.html#p1057502

2. If $$y=\frac{(3^5-3^2)^2}{(5^7-5^4)^{-2}}$$, then y is NOT divisible by which of the following?
A. 6^4
B. 62^2
C. 65^2
D. 15^4
E. 52^4

Solution: baker-s-dozen-128782-20.html#p1057503

3. For the past k days the average (arithmetic mean) cupcakes per day that Liv baked was 55. Today Bibi joined and together with Liv they baked 100 cupcakes, which raises the average to 60 cupcakes per day. What is the value of k?
A. 6
B. 8
C. 9
D. 10
E. 12

Solution: baker-s-dozen-128782-20.html#p1057504

4. What is the smallest positive integer $$k$$ such that $$126*\sqrt{k}$$ is the square of a positive integer?
A. 14
B. 36
C. 144
D. 196
E. 441

Solution: baker-s-dozen-128782-20.html#p1057505

5. There are 7 red and 5 blue marbles in a jar. In how many ways 8 marbles can be selected from the jar so that at least one red marble and at least one blue marble to remain in the jar?
A. 460
B. 490
C. 493
D. 455
E. 445

Solution: baker-s-dozen-128782-20.html#p1057507

6. A pool has two water pumps A and B and one drain C. Pump A alone can fill the whole pool in x hours, and pump B alone can fill the whole pool in y hours. The drain can empty the whole pool in z hours, where z>x. With pumps A and B both running and the drain C unstopped till the pool is filled, which of the following represents the amount of water in terms of the fraction of the pool which pump A pumped into the pool?
A. $$\frac{yz}{x+y+z}$$

B. $$\frac{yz}{yz+xz-xy}$$

C. $$\frac{yz}{yz+xz+xy}$$

D. $$\frac{xyz}{yz+xz-xy}$$

E. $$\frac{yz+xz-xy}{yz}$$

Solution: baker-s-dozen-128782-20.html#p1057508

7. Metropolis Corporation has 4 shareholders: Fritz, Luis, Alfred and Werner. Number of shares that Fritz owns is 2/3 rd of number of the shares of the other three shareholders, number of the shares that Luis owns is 3/7 th of number of the shares of the other three shareholders and number of the shares that Alfred owns is 4/11 th of number of the shares of the other three shareholders. If dividends of $3,600,000 were distributed among the 4 shareholders, how much of this amount did Werner receive? A.$60,000
B. $90,000 C.$100,000
D. $120,000 E.$180,000

Solution: baker-s-dozen-128782-20.html#p1057509

8. A set A consists of 7 consecutive odd integers. If the sum of 5 largest integers of set A is -185 what is the sum of the 5 smallest integers of set A?
A. -165
B. -175
C. -195
D. -205
E. -215

Solution: baker-s-dozen-128782-20.html#p1057512

9. If x and y are negative numbers, what is the value of $$\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}$$?
A. 1+y
B. 1-y
C. -1-y
D. y-1
E. x-y

Solution: baker-s-dozen-128782-20.html#p1057514

10. If x^2<81 and y^2<25, what is the largest prime number that can be equal to x-2y?
A. 7
B. 11
C. 13
D. 17
E. 19

Solution: baker-s-dozen-128782-20.html#p1057515

11. In an infinite sequence 1, 3, 9, 27, ... each term after the first is three times the previous term. What is the difference between the sum of 13th and 15th terms and the sum of 12th and 14th terms of the sequence?
A. 10*3^11
B. 20*3^11
C. 10*3^12
D. 40*3^11
E. 20*3^12

Solution: baker-s-dozen-128782-40.html#p1057517

12. x, y and z are positive integers such that when x is divided by y the remainder is 3 and when y is divided by z the remainder is 8. What is the smallest possible value of x+y+z?
A. 12
B. 20
C. 24
D. 29
E. 33

Solution: baker-s-dozen-128782-40.html#p1057519

13. If $$x=\frac{(8!)^{10}-(8!)^6}{(8!)^{5}-(8!)^3}$$, what is the product of the tens and the units digits of $$\frac{x}{(8!)^3}-39$$?
A. 0
B. 6
C. 7
D. 12
E. 14

Solution: baker-s-dozen-128782-40.html#p1057520
_________________

Kudos [?]: 132894 [22], given: 12391

Intern
Joined: 03 Sep 2010
Posts: 16

Kudos [?]: 9 [0], given: 106

### Show Tags

10 Mar 2012, 11:55
LalaB wrote:
(

sqroot of (negative number ^2) = (negative number ^2)^1/2=negative number

for example sqroot (-5*|5|)=sqroot (-5^2)=((-5)^2)^1/2=-5[/quote]

agreed but here isn't the concept little different, as it is already mentioned that y is negative hence -y= positive y

Kudos [?]: 9 [0], given: 106

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [0], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38

### Show Tags

11 Mar 2012, 00:51
Bunuel, could u please tell us which question is still unanswered or answered wrong by all of us? I want to think on such questions more, before u post solutions.

and btw, do u read our solutions or just only answers? I wonder whether my way of thinking was ok. in some cases I tried to use another method not to repeat others. I just wonder whether it worked, or it was just coincidence
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [0], given: 73

Intern
Joined: 02 Jan 2011
Posts: 9

Kudos [?]: 28 [0], given: 0

### Show Tags

11 Mar 2012, 01:43
Was it the wrong solution of #9. It seems to me that my post was removed

Kudos [?]: 28 [0], given: 0

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

11 Mar 2012, 01:50
SergeNew wrote:
Was it the wrong solution of #9. It seems to me that my post was removed

Even if it were wrong I wouldn't remove it, it's just on the second page: baker-s-dozen-128782-20.html#p1056538
_________________

Kudos [?]: 132894 [0], given: 12391

Intern
Joined: 03 Sep 2010
Posts: 16

Kudos [?]: 9 [0], given: 106

### Show Tags

11 Mar 2012, 05:36
@karishma

then why is |x|/x =-1 , should not it be 1 as |x|=-x and denominator is negative as well

Kudos [?]: 9 [0], given: 106

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7741

Kudos [?]: 17830 [0], given: 235

Location: Pune, India

### Show Tags

11 Mar 2012, 20:52
utkarshlavania wrote:
@karishma

then why is |x|/x =-1 , should not it be 1 as |x|=-x and denominator is negative as well

You are right that |x|=-x since x is negative but tell me, what is -x, negative or positive? Negative of negative gives you positive, right? So -x must be positive. Now, if x is negative,
-x/x must be positive/negative giving you -1.

You are confusing yourself too much with negatives and positives. Just think of it this way:

|x|/x = -x/x (By definition, since |x| = -x when x < 0)
-x/x = -1 ( x and x get canceled here leaving you with -1)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for \$199

Veritas Prep Reviews

Kudos [?]: 17830 [0], given: 235

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

13 Mar 2012, 03:56
Expert's post
9
This post was
BOOKMARKED
8. A set A consists of 7 consecutive odd integers. If the sum of 5 largest integers of set A is -185 what is the sum of the 5 smallest integers of set A?
A. -165
B. -175
C. -195
D. -205
E. -215

Say 7 consecutive odd integers are: $$x$$, $$x+2$$, $$x+4$$, $$x+6$$, $$x+8$$, $$x+10$$, $$x+12$$.

Question: $$x+(x+2)+(x+4)+(x+6)+(x+8)=5x+20=?$$

Given: $$(x+4)+(x+6)+(x+8)+(x+10)+(x+12)=-185$$ --> $$(x+4)+(x+6)+(x+8)+(x+10)+(x+12)=5x+40=-185$$ --> $$(5x+20)+20=-185$$ --> $$5x+20=-205$$

_________________

Kudos [?]: 132894 [0], given: 12391

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

13 Mar 2012, 03:59
Expert's post
22
This post was
BOOKMARKED
10. If x^2<81 and y^2<25, what is the largest prime number that can be equal to x-2y?
A. 7
B. 11
C. 13
D. 17
E. 19

Notice that we are not told that $$x$$ and $$y$$ are integers.

$$x^2<81$$ means that $$-9<x<9$$ and $$y^2<25$$ means that $$-5<y<5$$. Now, since the largest value of $$x$$ is almost 9 and the largest value of $$-2y$$ is almost 10 (for example if $$y=-4.9$$), then the largest value of $$x-2y$$ is almost 9+10=19, so the actual value is less than 19, which means that the largest prime that can be equal to $$x-2y$$ is 17. For example: $$x=8$$ and $$y=-4.5$$.

_________________

Kudos [?]: 132894 [0], given: 12391

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

13 Mar 2012, 04:00
Expert's post
4
This post was
BOOKMARKED
11. In an infinite sequence 1, 3, 9, 27, ... each term after the first is three times the previous term. What is the difference between the sum of 13th and 15th terms and the sum of 12th and 14th terms of the sequence?
A. 10*3^11
B. 20*3^11
C. 10*3^12
D. 40*3^11
E. 20*3^12

You don't need to know geometric progression formula to solve this question. All you need is to find the pattern:

$$b_1=1=3^0$$;
$$b_2=3=3^1$$;
$$b_3=9=3^2$$;
$$b_4=27=3^3$$;
...
$$b_n=3^{n-1}$$;

$$b_{13}+b_{15}-(b_{12}+b_{14})=3^{12}+3^{14}-3^{11}-3^{13}=3^{11}(3+3^3-1-3^2)=20*3^{11}$$

_________________

Kudos [?]: 132894 [0], given: 12391

Senior Manager
Joined: 25 Feb 2010
Posts: 448

Kudos [?]: 112 [0], given: 10

### Show Tags

14 Mar 2012, 15:45
Bunuel wrote:
9. If x and y are negative numbers, what is the value of $$\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}$$?
A. 1+y
B. 1-y
C. -1-y
D. y-1
E. x-y

Note that $$\sqrt{a^2}=|a|$$. Next, since $$x<0$$ and $$y<0$$ then $$|x|=-x$$ and $$|y|=-y$$.

So, $$\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}=\frac{|x|}{x}-\sqrt{(-y)*(-y)}=\frac{-x}{x}-\sqrt{y^2}=-1-|y|=-1+y$$

Hi Bunuel,

I didn't quite understand this ..

X and Y are odd then how can |x| = -x it has to be +ive.
_________________

GGG (Gym / GMAT / Girl) -- Be Serious

Its your duty to post OA afterwards; some one must be waiting for that...

Kudos [?]: 112 [0], given: 10

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

14 Mar 2012, 17:10
Expert's post
1
This post was
BOOKMARKED
onedayill wrote:
Bunuel wrote:
9. If x and y are negative numbers, what is the value of $$\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}$$?
A. 1+y
B. 1-y
C. -1-y
D. y-1
E. x-y

Note that $$\sqrt{a^2}=|a|$$. Next, since $$x<0$$ and $$y<0$$ then $$|x|=-x$$ and $$|y|=-y$$.

So, $$\frac{\sqrt{x^2}}{x}-\sqrt{-y*|y|}=\frac{|x|}{x}-\sqrt{(-y)*(-y)}=\frac{-x}{x}-\sqrt{y^2}=-1-|y|=-1+y$$

Hi Bunuel,

I didn't quite understand this ..

X and Y are odd then how can |x| = -x it has to be +ive.

x and y are negative numbers, not odd numbers.

If $$x\geq{0}$$ then $$|x|=x$$;
If $$x<{0}$$ then $$|x|=-x$$. So if $$x$$ is negative then $$|x|=-x=-negative=positive$$. For example, if $$x=-2$$ then $$|x|=|-2|=2=-x$$.

Check Absolute Values chapter of Math Book for more: math-absolute-value-modulus-86462.html

Hope it helps.
_________________

Kudos [?]: 132894 [0], given: 12391

Senior Manager
Joined: 12 Dec 2010
Posts: 277

Kudos [?]: 57 [0], given: 23

Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)

### Show Tags

14 Mar 2012, 23:43
Got 9 correct with @ 2.5 mins/Q ... how about others ? (2 Q left without going to deep as killed more than 4 mins on those Q4,7- this proves that not to waste time on something you don't get idea in 1.5-2 mins time frame and missed 2 narrowly- Q9, 10: 10 I din't read 2y but only y so...)..will post in details some explanations, esp. those which are little different from already posted by the very own legend Mr B!!
_________________

My GMAT Journey 540->680->730!

~ When the going gets tough, the Tough gets going!

Kudos [?]: 57 [0], given: 23

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

16 Mar 2012, 03:47
chetan2u wrote:
Bunuel wrote:
6. A pool has two water pumps A and B and one drain C. Pump A alone can fill the whole pool in x hours, and pump B alone can fill the whole pool in y hours. The drain can empty the whole pool in z hours, where z>x. With pumps A and B both running and the drain C unstopped till the pool is filled, which of the following represents the fraction of the pool which pump A filled?
A. $$\frac{yz}{x+y+z}$$

B. $$\frac{yz}{yz+xz-xy}$$

C. $$\frac{yz}{yz+xz+xy}$$

D. $$\frac{xyz}{yz+xz-xy}$$

E. $$\frac{yz+xz-xy}{yz}$$

With pumps A and B both running and the drain unstopped the pool will be filled in a rate $$\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=\frac{yz+xz-zy}{xyz}$$ pool/hour. So, the pool will be filled in $$\frac{xyz}{yz+xz-xy}$$ hours (time is reciprocal of rate).

In $$\frac{xyz}{yz+xz-xy}$$ hours pump A will do $$\frac{1}{x}*\frac{xyz}{yz+xz-xy}=\frac{yz}{yz+xz-xy}$$ part of the job.

hi , i feel the ans to this Q is wrong. as we have to tell what fraction of the pool was filled up by pump A. it will not depend on the drain C as the filling was done only by pump A and B. ans shud be y/(x+y).
the given ans would be correct if we were to find "the amount of water pumped by A in that duration"

Actually that was the intended meaning of the question. I edited it so to avoid ambiguity: "which of the following represents the amount of water in terms of the fraction of the pool which pump A pumped into the pool?"

Hope now it's more precise.
_________________

Kudos [?]: 132894 [0], given: 12391

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

17 Mar 2012, 01:12
GMATD11 wrote:
Bunuel wrote:
2. If $$y=\frac{(3^5-3^2)^2}{(5^7-5^4)^{-2}}$$, then y is NOT divisible by which of the following?
A. 6^4
B. 62^2
C. 65^2
D. 15^4
E. 52^4

$$y=\frac{(3^5-3^2)^2}{(5^7-5^4)^{-2}}=(3^5-3^2)^2*(5^7-5^4)^2=3^4*(3^3-1)^2*5^8*(5^3-1)^2=3^4*26^2*5^8*124^2=2^6*3^4*5^8*13^2*31^2$$.

Now, if you analyze each option you'll see that only $$52^4=2^4*13^4$$ is not a factor of $$y$$, since the power of 13 in it is higher than the power of 13 in $$y$$.

Pls correct the Typo 2^4 to 2^8

Typo corrected, thanks.
_________________

Kudos [?]: 132894 [0], given: 12391

Intern
Joined: 10 Feb 2012
Posts: 11

Kudos [?]: 3 [0], given: 21

### Show Tags

18 Mar 2012, 16:45
Bunuel wrote:
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is $$9*9*C^3_5=810$$: each out of two other digits (not 6) has 9 choices, thus we have 9*9 and $$C^3_5$$ is ways to choose which 3 digits will be 6's out of 5 digits we have.

$$P=\frac{favorable}{total}=\frac{810}{10^5}$$

Hello Bunnel....

Can you kindly clarify this question and elaborate on the solution!!

Kudos [?]: 3 [0], given: 21

Math Expert
Joined: 02 Sep 2009
Posts: 42280

Kudos [?]: 132894 [0], given: 12391

### Show Tags

19 Mar 2012, 04:10
balas wrote:
Bunuel wrote:
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is $$9*9*C^3_5=810$$: each out of two other digits (not 6) has 9 choices, thus we have 9*9 and $$C^3_5$$ is ways to choose which 3 digits will be 6's out of 5 digits we have.

$$P=\frac{favorable}{total}=\frac{810}{10^5}$$

Hello Bunnel....

Can you kindly clarify this question and elaborate on the solution!!

Can you please specify which part didn't you understand? Thanks.
_________________

Kudos [?]: 132894 [0], given: 12391

Manager
Joined: 22 Feb 2012
Posts: 93

Kudos [?]: 25 [0], given: 25

Schools: HBS '16
GMAT 1: 740 Q49 V42
GMAT 2: 670 Q42 V40
GPA: 3.47
WE: Corporate Finance (Aerospace and Defense)

### Show Tags

27 Mar 2012, 11:04
Awesome set of questions!

Kudos [?]: 25 [0], given: 25

Intern
Joined: 14 Apr 2012
Posts: 7

Kudos [?]: [0], given: 35

### Show Tags

28 Apr 2012, 03:41
Can any one please explain: why it is (9*9*1*1*1* 5C3) in Question no. 1 (password problem)?
Why not : 9*9*1*1*1* 5!/2! ??

Last edited by mofasser08 on 28 Apr 2012, 04:00, edited 1 time in total.

Kudos [?]: [0], given: 35

Manager
Joined: 12 Feb 2012
Posts: 130

Kudos [?]: 63 [0], given: 28

### Show Tags

28 Apr 2012, 19:47
Bunuel wrote:
SOLUTIONS:

1. A password on Mr. Wallace's briefcase consists of 5 digits. What is the probability that the password contains exactly three digit 6?

A. 860/90,000
B. 810/100,000
C. 858/100,000
D. 860/100,000
E. 1530/100,000

Total # of 5 digit codes is 10^5, notice that it's not 9*10^4, since in a code we can have zero as the first digit.

# of passwords with three digit 6 is $$9*9*C^3_5=810$$: each out of two other digits (not 6) has 9 choices, thus we have 9*9 and $$C^3_5$$ is ways to choose which 3 digits will be 6's out of 5 digits we have.

$$P=\frac{favorable}{total}=\frac{810}{10^5}$$

Hey Bunuel,

Sorry to trouble you. If you could, I would appreciate if you could clarify more about 5C3. So this is how I approached the problem:

We have three - 6's. With two slots that can be filled by 9 numbers.

666 9 9 . Now the question is how many ways can we rearrange these codes of three 6's and 2 non 6's? Well, have 5 elements 3 identical (because we have 3 identical 6's and two non-6's) Hence we have 5!/(3!2!) ways of rearranging the numbers. Is this why we have 5C3 in the problem?

But the two non-6's can be identical or different. For example 66611 66622 66633 66644 66655 ... 66699... etc all satisfy the condition of only three 6's. The number of ways to rearrange the letters {aaabb} is 5!/(3!2!). Moreover, we can also have the two non-6's be different, 66612 66654 66624, etc . the number of ways to rearrange the letters {aaabc} is 5!/(3!).

What do we do in this situation? Do we look at this problem as (#6)(#6)(#6)(not #6)(not #6) therefore 5!/(3!2!). Three repeating elements of #6 and two repeating elements of not #6.

OR

Do we look at the problem as (#6)(#6)(#6)(x)(y), where x and y two numbers that are not 6, that may or may not be equal, therefore 5!/3! (3! for the 3 repeating 6's but we cannot say anything about whether x and y are equal to each other)

Bunuel, as always, thank you so much!! And again, sorry to trouble you.

Kudos [?]: 63 [0], given: 28

Manager
Joined: 12 Feb 2012
Posts: 130

Kudos [?]: 63 [0], given: 28

### Show Tags

28 Apr 2012, 19:51
mofasser08 wrote:
Can any one please explain: why it is (9*9*1*1*1* 5C3) in Question no. 1 (password problem)?
Why not : 9*9*1*1*1* 5!/2! ??

Mofasser,

We pretty much have the same question. But I think the reasons it's 5C3 is because we have

(#6)(#6)(#6)(not #6)(not #6)=aaabb.

The number of ways to rearrange aaabb is 5!/(3!2!). But we need to check with the Oracle, Bunuel.

Kudos [?]: 63 [0], given: 28

Re: Baker's Dozen   [#permalink] 28 Apr 2012, 19:51

Go to page   Previous    1   2   3   4   5   6   7   8   9    Next  [ 174 posts ]

Display posts from previous: Sort by