Bill has a small deck of 12 playing cards : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 24 Feb 2017, 22:01

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Bill has a small deck of 12 playing cards

Author Message
TAGS:

Hide Tags

Manager
Joined: 10 Jan 2010
Posts: 117
GPA: 4
WE: Programming (Computer Software)
Followers: 0

Kudos [?]: 127 [7] , given: 33

Bill has a small deck of 12 playing cards [#permalink]

Show Tags

18 Jun 2010, 21:47
7
KUDOS
29
This post was
BOOKMARKED
00:00

Difficulty:

75% (hard)

Question Stats:

62% (03:02) correct 38% (02:45) wrong based on 351 sessions

HideShow timer Statistics

Bill has a small deck of 12 playing cards made up of only 2 suits of 6 cards each. Each of the 6 cards within a suit has a different value from 1 to 6; thus, for each value from 1 to 6, there are two cards in the deck with that value. Bill likes to play a game in which he shuffles the deck, turns over 4 cards, and looks for pairs of cards that have the same value. What is the chance that Bill finds at least one pair of cards that have the same value?

A. 8/33
A. 62/165
C. 17/33
D. 103/165
E. 25/33
[Reveal] Spoiler: OA

_________________

-If you like my post, consider giving KUDOS

Math Expert
Joined: 02 Sep 2009
Posts: 37108
Followers: 7254

Kudos [?]: 96552 [24] , given: 10753

Show Tags

18 Jun 2010, 23:24
24
KUDOS
Expert's post
12
This post was
BOOKMARKED
maheshsrini wrote:
Bill has a small deck of 12 playing cards made up of only 2 suits of 6 cards each. Each of the 6 cards within a suit has a different value from 1 to 6; thus, for each value from 1 to 6, there are two cards in the deck with that value. Bill likes to play a game in which he shuffles the deck, turns over 4 cards, and looks for pairs of cards that have the same value. What is the chance that Bill finds at least one pair of cards that have the same value?
8/33
62/165
17/33
103/165
25/33

Let's calculate the opposite probability ans subtract this value from 1.

Opposite probability would be that there will be no pair in 4 cards, meaning that all 4 cards will be different: $$\frac{C^4_6*2^4}{C^4_{12}}=\frac{16}{33}$$.

$$C^4_6$$ - # of ways to choose 4 different cards out of 6 different values;
$$2^4$$ - as each of 4 cards chosen can be of 2 different suits;
$$C^4_{12}$$ - total # of ways to choose 4 cards out of 12.

So $$P=1-\frac{16}{33}=\frac{17}{33}$$.

Or another way:

We can choose any card for the first one - $$\frac{12}{12}$$;
Next card can be any card but 1 of the value we'v already chosen - $$\frac{10}{11}$$ (if we've picked 3, then there are one more 3 left and we can choose any but this one card out of 11 cards left);
Next card can be any card but 2 of the values we'v already chosen - $$\frac{8}{10}$$ (if we've picked 3 and 5, then there are one 3 and one 5 left and we can choose any but these 2 cards out of 10 cards left);
Last card can be any card but 3 of the value we'v already chosen - $$\frac{6}{9}$$;

$$P=\frac{12}{12}*\frac{10}{11}*\frac{8}{10}*\frac{6}{9}=\frac{16}{33}$$.

So $$P=1-\frac{16}{33}=\frac{17}{33}$$ - the same answer as above.

Hope it helps.
_________________
Senior Manager
Status: mba here i come!
Joined: 07 Aug 2011
Posts: 270
Followers: 43

Kudos [?]: 1068 [4] , given: 48

Show Tags

22 Feb 2012, 14:06
4
KUDOS
required probability = 1 - p(no pair)

p(no pair) = $$\frac{12}{12}*\frac{10}{11}*\frac{8}{10}*\frac{6}{9} = \frac{16}{33}$$

required prob = $$1 - \frac{16}{33} = \frac{17}{33}$$
_________________

press +1 Kudos to appreciate posts

GMAT Tutor
Joined: 24 Jun 2008
Posts: 1183
Followers: 423

Kudos [?]: 1530 [3] , given: 4

Re: Experts attention - Tricky Probability question [#permalink]

Show Tags

13 Sep 2010, 06:05
3
KUDOS
Expert's post
shrouded1 wrote:
This subtlety is present in a lot of probability questions and must be clarified in the Q. The above question is in MGMAT (I got it on my CAT), but it fails to tell you if the 4 cards that are picked are picked simultaneously (i.e. order does not matter) or one by one. In my opinion such questions are ambiguous and the answer is dependent on the assumption you make. Unfortunately there are more Qs like this one on the MGMAT CATs, just something to be weary of.

Whether you pick the four cards simultaneously, or pick them one at a time (without replacement) doesn't actually matter if you are finding a probability; the two situations are mathematically identical. You can see this intuitively by thinking of taking hold of four cards in the deck first. If you take them all out at the same time, or if there is a nanosecond between your removing each, why would the probability that you get a pair be affected? It won't be, so the 'ambiguity' you suggest is present in such questions is no ambiguity at all.

You can see that either perspective will give you the same answer, though it's easier to illustrate with a simpler example. Say you have 3 red marbles and 4 blue marbles in a bag, and you pick two (either simultaneously, or without replacement - it's the same thing), and you want to find the probability of picking two red marbles. If we look at the problem as though we are picking marbles one at a time, we have 3*2 ways of picking two reds, and 7*6 ways of picking two marbles, so the probability would be 3*2/7*6 = 1/7. If we look at the problem as though we're picking two marbles simultaneously, we have 3C2 ways of picking two red marbles and 7C2 ways of picking two marbles, so the probability would be 3C2/7C2 = 1/7. So when you stick your two hands in the bag and grab two marbles, it doesn't matter if you lift your two hands out at the same time, or take them out one at a time; the probability is the same.

Note though that you need to be consistent in the calculation - if you assume order matters when you calculate the numerator, you must also assume order matters when you calculate the denominator.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Senior Manager
Joined: 23 Oct 2010
Posts: 386
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Followers: 22

Kudos [?]: 339 [3] , given: 73

Re: Bill has a small deck of 12 playing [#permalink]

Show Tags

08 May 2012, 08:51
3
KUDOS
Bill has a small what?

sorry for that joke ))) Actually, this question was discussed trillions times. that is why I cant do anything, but smile )

P.S. my advise- use google search and ur life will be brighter
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

GMAT Tutor
Joined: 24 Jun 2008
Posts: 1183
Followers: 423

Kudos [?]: 1530 [2] , given: 4

Re: Help solving a probability problem using combinatorics [#permalink]

Show Tags

26 Nov 2011, 20:18
2
KUDOS
Expert's post
I don't like the direct approach here, but I did post a solution using it in this thread (scroll down a bit) :

http://www.beatthegmat.com/combination- ... t8924.html

It's a lot more work to do the problem directly than it is to find the probability of no pairs and subtract from 1, however.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

VP
Joined: 24 Jul 2011
Posts: 1134
GMAT 1: 780 Q51 V48
GRE 1: 1540 Q800 V740
Followers: 125

Kudos [?]: 550 [2] , given: 19

Show Tags

29 Dec 2011, 10:04
2
KUDOS
This calculation is not really too lengthy. Although this is a difficult question, it is fair game for the GMAT at higher score levels.

Required probability = 1 -prob(no pair of cards have the same value)
= 1 - [(12x10x8x6/12x11x10x9)]
= 1 - 48/99
= 17/33

Option (C)
_________________

GyanOne | Top MBA Rankings and MBA Admissions Blog

Premium MBA Essay Review|Best MBA Interview Preparation|Exclusive GMAT coaching

Get a FREE Detailed MBA Profile Evaluation | Call us now +91 98998 31738

Intern
Joined: 13 Mar 2012
Posts: 20
GMAT 1: 700 Q50 V34
Followers: 0

Kudos [?]: 24 [2] , given: 9

Re: Bill has a small deck of 12 playing [#permalink]

Show Tags

08 May 2012, 05:39
2
KUDOS
total no of ways of choosing any 4 cards out of 12 = 12 C 4
=45*11

the no favourable outcomes, i.e atleast 1 pair , = no of pairs i.e 6 *{ ( no of ways of choosing the remaining 2 cards, i.e. 10 C 2 - the no of repetitions (i.e.5)} + the no ways of getting 2 pairs .i.e. 15

= 6( 10 C2 -5)+15
= 6(40)+15
= 3*85

therefor probability = (3*85 )/ (45*11)
= 17/33
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7187
Location: Pune, India
Followers: 2169

Kudos [?]: 14025 [2] , given: 222

Show Tags

29 Apr 2013, 02:41
2
KUDOS
Expert's post
Bunuel wrote:
maheshsrini wrote:
Bill has a small deck of 12 playing cards made up of only 2 suits of 6 cards each. Each of the 6 cards within a suit has a different value from 1 to 6; thus, for each value from 1 to 6, there are two cards in the deck with that value. Bill likes to play a game in which he shuffles the deck, turns over 4 cards, and looks for pairs of cards that have the same value. What is the chance that Bill finds at least one pair of cards that have the same value?
8/33
62/165
17/33
103/165
25/33

Let's calculate the opposite probability ans subtract this value from 1.

Opposite probability would be that there will be no pair in 4 cards, meaning that all 4 cards will be different: $$\frac{C^4_6*2^4}{C^4_{12}}=\frac{16}{33}$$.

Responding to a pm:

How do we obtain $$6C4*2^4$$?

Think of what you have:
6 cards numbered 1 to 6 of 2 different suits. Say you have 1 to 6 of clubs and 1 to 6 of diamonds. A total of 12 cards.

You want to select 4 cards such that there is no pair i.e. no two cards have the same number. This means all 4 cards will have different numbers, say, you get a 1, 2, 4 and 6. The 1 could be of clubs or diamonds. The 2 could be of clubs and diamonds and so on for all 4 cards.

This means you must select 4 numbers out of the 6 numbers in 6C4 ways.
Then for each number, you must select a suit out of the given two suits.
That is how you get 6C4 * 2*2*2*2

This is the total number of ways in which you will have no pair i.e. two cards of same number.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Retired Moderator Joined: 02 Sep 2010 Posts: 805 Location: London Followers: 108 Kudos [?]: 972 [1] , given: 25 Re: Probability [#permalink] Show Tags 21 Sep 2010, 22:08 1 This post received KUDOS mainhoon wrote: Bunuel - I understand the 6c4 x 2^4 approach.. but why is this wrong: 6c2 - 2 cards from 1st suite 4c2 - 2 cards from the 4 remaining (the other 2 have the same #s as the ones selected from 1st suite).. so 6c2 x 4c2? There is 2 major problems with this : (a) By choosing 2 cards from one suit and 2 from the other, you are forcing that the choice has exactly 2 cards from each suit, which is not true (b) Even if you had to calculate no of ways to pick 4 cards such that no pairs and 2 cards from each suite, this is wrong, because it needs to be multiplied by 2 [2 ways to choose which is the "first suite"] _________________ Manager Joined: 15 Jan 2011 Posts: 103 Followers: 11 Kudos [?]: 160 [1] , given: 13 Re: Bill has a small deck of 12 playing [#permalink] Show Tags 08 May 2012, 11:57 1 This post received KUDOS Quote: Bill has a small what? sorry for that joke ))) Actually, this question was discussed trillions times. that is why I cant do anything, but smile ) bill-has-a-small-deck-of-12-playing-cards-made-up-of-only-2-suits-of-6-cards-each-96078.html P.S. my advise- use google search and ur life will be brighter https://www.google.ru/#hl=ru&newwindow= ... 54&bih=579 actually i don't care what has Bill and what size it is - but it took me more than two min to find it out compared to trillion +-1 doesnt make any difference ) but ,anyway, thank you for an advice - a quite good one! Director Joined: 22 Mar 2011 Posts: 612 WE: Science (Education) Followers: 101 Kudos [?]: 912 [1] , given: 43 Re: Bill has a small deck of 12 playing cards made up of only 2 [#permalink] Show Tags 17 Sep 2012, 09:32 1 This post received KUDOS stne wrote: The way that is given here I understand. pairs-twins-and-couples-103472.html#p805725 But I am trying to do in another way , wonder what I am doing wrong. at least one pair means either one pair or two pairs so lets suppose we have A1 A2 A3 A4 A5 A6 AND B1 B2 B3 B4 B5 B6 I understand the 1 - p( opposite event ) but just for understanding sake , if I tried the direct way , how could it be done. P( One pair) + p( two pairs ) one pair 6C1*10C2(4!/2!)= 720 6C1 = ways to select the one card from 6 which will form the pair 5C2 = select two different cards from the 5 remaining to form the singles * This I think this is not correct , what would be correct * 4!/2! = permutations of 4 letters where two are identical for two pairs 6C2 * 4!/2!2! = 90 6C2 = ways to select the two cards which will form the pair . 4!/2!2! = ways to arrange the 4 letters where 2 are same kind and another 2 are same kind . hence total ways for at least one pair -> 6C1*10C2(4!/2!) + 6C2 * 4!/2!2! = 810 ( what is wrong here) however this will not the required answer, can anybody please correct my logic and show me how to approach this direct way ? total ways 4 cards can be selected 12C4 = 495 hence I am getting a probability more than one which is not possible Would highly appreciate any help. One pair - should be 6C1*5C2*2*2 = 6*10*4 = 240. Choose one pair out of 6, then two single cards from two different pairs. You have two suits, so for the same number two possibilities. Two pairs - just 6C2=15. Total - 255 Probability 255/495 = 17/33. 10C2 also includes remaining pairs of cards with the same number, so choosing 2 out of 10 does not guarantee two non-identical numbers. Another problem is that 495 represents the number of choices for 4 cards, regardless to the order in which they were drawn. Then you should consider the other choices accordingly, and disregard the order in which they were chosen. _________________ PhD in Applied Mathematics Love GMAT Quant questions and running. Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7187 Location: Pune, India Followers: 2169 Kudos [?]: 14025 [1] , given: 222 Re: Bill has a small deck of 12 playing cards [#permalink] Show Tags 17 Sep 2012, 22:25 1 This post received KUDOS Expert's post stne wrote: Just edited my original post Meant to take 5C2 not 10C2, so my doubt one pair 6C1*5C2(4!/2!)= 720 6C1 = ways to select the one card from 6 which will form the pair 5C2 = select two different cards from the 5 remaining to form the singles * This I think this is not correct , what would be correct * 4!/2! = permutations of 4 letters where two are identical for two pairs 6C2 * 4!/2!2! = 90 6C2 = ways to select the two cards which will form the pair . 4!/2!2! = ways to arrange the 4 letters where 2 are same kind and another 2 are same kind . Responding to a pm: There is a difference between this question and the other one you mentioned. In that question, you were using one digit twice which made them identical. Here the two cards that form the pair are not identical. They are of different suits. Also, here, you don't need to arrange them. You can assume to just take a selection while calculating the cases in the numerator and the denominator. The probability will not get affected. In the other question, you needed to find the number of arrangements to make the passwords/numbers and hence you needed to arrange the digits. Hence, in this step, 6C1*5C2(4!/2!), it should be 6C1*5C2*2*2 instead. 6C1 = ways to select the one card from 6 which will form the pair 5C2 = select two different values from the 5 remaining to form the singles *This is correct * 2*2 = For each of the two values, you can select a card in 2 ways (since you have 2 suits) Similarly, 6C2 * 4!/2!2! should be 6C2 only to select 2 pairs out of 6. Probability = 255/495 = 17/33 Note: You can arrange the cards too and will still get the same probability. Just ensure that you arrange in numerator as well as denominator. Only one pair = 6C1*5C2*2*2 * 4! (you multiply by 4! because all the cards are distinct) Both pairs = 6C2 * 4! (you multiply by 4! because all the cards are distinct) Select 4 cards out of 12 = 12C4 * 4! (you multiply by 4! because all the cards are distinct) Probability = 255*4!/495*4! = 17/33 _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 101

Kudos [?]: 912 [1] , given: 43

Re: Bill has a small deck of 12 playing cards [#permalink]

Show Tags

17 Sep 2012, 22:43
1
KUDOS
stne wrote:
Just edited my original post
Meant to take 5C2 not 10C2,

so my doubt

one pair

6C1*5C2(4!/2!)= 720

6C1 = ways to select the one card from 6 which will form the pair
5C2 = select two different cards from the 5 remaining to form the singles * This I think this is not correct , what would be correct *
4!/2! = permutations of 4 letters where two are identical

for two pairs

6C2 * 4!/2!2! = 90

6C2 = ways to select the two cards which will form the pair .
4!/2!2! = ways to arrange the 4 letters where 2 are same kind and another 2 are same kind .

one pair
6C1*5C2(4!/2!)= 720

NO
Choose one pair out of 6 - 6C1 - and you don't care for the order in which you choose the two cards
Choose two pairs out of the remaining 5 pairs - 5C2 - and then, from each pair, you have 2 possibilities to choose one of them, therefore 5C2*2*2
Here you stop! Don't care about any order. Period.

for two pairs
6C2 * 4!/2!2! = 90

NO
You choose two pairs - 6C2 - and you stop here. From each pair you take both cards, and don't care about any order.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7187
Location: Pune, India
Followers: 2169

Kudos [?]: 14025 [1] , given: 222

Re: Bill has a small deck of 12 playing cards [#permalink]

Show Tags

14 Jun 2015, 21:21
1
KUDOS
Expert's post
davesinger786 wrote:
Hi Guys ,can someone please tell me why this method would be incorrect?
To select 4 cards from 2 different suits with each having different values ,I could go the following ways
a)Select 2 each from Suit A and Suit B -> 6c2*4c2(To get rest 2 cards from the 4 different values of the other suit)
b)3 from A and 1 from B-> 6c3*3c1
c) 1 from A and 3 from B->6c1*5c3
d)All four from A -> 6c4
e)All four from B->6c4
when I add them all up I get the correct answer but I'm not sure if this is the correct approach..Please guide me!! Thanks

Yes, using this method, you will get the number of ways in which you will have no pairs. When you subtract those from the total number of ways, you will get the number of ways in which you will have at least one pair. This will give you the required probability. Nothing wrong here. This method will be a bit time consuming though, hence I would suggest you to check out Bunuel's approach given above too.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for \$199

Veritas Prep Reviews

Manager
Joined: 07 Oct 2006
Posts: 71
Location: India
Followers: 1

Kudos [?]: 9 [0], given: 3

Show Tags

18 Jun 2010, 23:52
Bunuel, very nice explanation. I believe, the second method can be derived logically and the first one with some knowledge of equations in permutations and combination. Thanks once again.
_________________

-------------------------------------

For English Grammar tips, consider visiting http://www.grammar-quizzes.com/index.html.

Manager
Joined: 21 Feb 2010
Posts: 212
Followers: 2

Kudos [?]: 31 [0], given: 1

Show Tags

22 Aug 2010, 10:54
bunuel, what's your chain of thought when you solve combination/permutation and probability questions? it seems to me that your logic is pretty clear when you solve this kind of problems. please share your secret/experience if you don't mind. thanks!
Retired Moderator
Joined: 02 Sep 2010
Posts: 805
Location: London
Followers: 108

Kudos [?]: 972 [0], given: 25

Re: Experts attention - Tricky Probability question [#permalink]

Show Tags

13 Sep 2010, 05:30
gmatrant wrote:
Bill has a small deck of 12 playing cards made up of only 2 suits of 6 cards each. Each of the 6 cards within a suit has a different value from 1 to 6; thus, for each value from 1 to 6, there are two cards in the deck with that value. Bill likes to play a game in which he shuffles the deck, turns over 4 cards, and looks for pairs of cards that have the same value. What is the chance that Bill finds at least one pair of cards that have the same value?

a.8/33
b.62/165
c.17/33
d.103/165
e.25/33

My approach-

We need to calculate 1-p(x) where x is the probability of not drawing identical numbered cards.
1.From 12 cards we can pick any one number as the first card - No of ways =12
2.We now have 10 ways of picking the next card that does not have identical number = 10 ways
3. Picking up the 3rd card in 8 ways since 2 cards are already chosen and we cannot choose the same numbered card.
4. Similarly as in 3 we can now have 6 ways to choose the fourth card

Total ways of not picking even one identical number pair card = 12*10*8*6
Total ways of picking up 4 cards out of 12 = 12 * 11 * 10 *9
Probability of x is (12*10*8*6) / (12*11*10*9) = 16/33
Hence p(1-x) = 17/33.

I have a question here The total way of picking up 4 cards our of 12 is 12C4 and it will give me a different number than I calculated above. Can you please tell me where I am going wrong here, though I get the answer.

In method 1, the order of picking matters
In method 2, when you use the C(n,r) formulae, the order of picking does not matter
As a result method 2 will always yield a lower number of ways than method 1
Eg. In method 1, you will count the set Suit1No1, Suit1No2,Suit2No3,Suit2No4, 4! times, one for each ordering between the 4 cards that exists, whereas in method 2, you will count it only once.

It is essentially the difference between P(n,r) and C(n,r)

This subtlety is present in a lot of probability questions and must be clarified in the Q. The above question is in MGMAT (I got it on my CAT), but it fails to tell you if the 4 cards that are picked are picked simultaneously (i.e. order does not matter) or one by one. In my opinion such questions are ambiguous and the answer is dependent on the assumption you make. Unfortunately there are more Qs like this one on the MGMAT CATs, just something to be weary of.
_________________
Retired Moderator
Joined: 02 Sep 2010
Posts: 805
Location: London
Followers: 108

Kudos [?]: 972 [0], given: 25

Re: Experts attention - Tricky Probability question [#permalink]

Show Tags

13 Sep 2010, 06:19
You are right, what I should have said is that the ambiguity occurs if you are solving the combinatorial problem, where you are counting outcomes.
In calculating probability it is irrelevant as the ordering terms will cancel themselves out.

In the question mentioned, the problem is if you calculate the number of relevant ways using one assumption and the total number of ways using another assumption
_________________
Retired Moderator
Joined: 02 Sep 2010
Posts: 805
Location: London
Followers: 108

Kudos [?]: 972 [0], given: 25

Show Tags

21 Sep 2010, 22:56
mainhoon wrote:
yes can see it now.. is there any other method to get the answer other than 6c4 2^4?

Using combinatorics, you can make up any number of ways to solve a problem.
The essence here is counting a certain subset of scenarios, how you choose to count that is entirely up to you.

As done above you can use a "Universe - Everything Else" or you can count directly in a number of ways like "Ways to pick exactly 1 pair + Ways to pick exactly 2 pairs", "Ways to pick pairs <= 3 + ways to pick pairs with number b/w 4 &6"

The point being how to count, can be answered in an arbitrary number of ways, but the end result is the same : ALL ROADS LEAD TO ROME .. you just need to pick the shortest and easiest one. In scenarios like this one "universe-everything" gives the most elegant and straight forward solution
_________________
Re: Probability   [#permalink] 21 Sep 2010, 22:56

Go to page    1   2    Next  [ 40 posts ]

Similar topics Replies Last post
Similar
Topics:
3 Peter took a 52-card deck of cards and removed all small cards 3 13 Oct 2015, 10:27
7 There are 2 decks of cards. The first deck has a 100 cards labelled... 5 03 Feb 2015, 18:03
8 A card game called “high-low” divides a deck of 52 playing c 7 09 Jun 2014, 18:51
12 Randolph has a deck of 12 playing cards made up of only 2 23 29 Jul 2012, 09:11
40 Laura has a deck of standard playing cards with 13 of the 52 16 15 Nov 2009, 21:28
Display posts from previous: Sort by