Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 29 May 2017, 16:09

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Challenge - divisibility and exponents (m05q33)

Author Message
CEO
Joined: 21 Jan 2007
Posts: 2741
Location: New York City
Followers: 11

Kudos [?]: 943 [0], given: 4

Challenge - divisibility and exponents (m05q33) [#permalink]

### Show Tags

08 Nov 2007, 22:33
2
This post was
BOOKMARKED
This topic is locked. If you want to discuss this question please re-post it in the respective forum.

If $$t$$ is a prime number, is $$32t^3 - 16t^2 + 8t - 4$$ divisible by $$t^2$$?

(1) $$t^2 <25$$
(2) $$t^2-8t+12=0$$

Source: GMAT Club Tests - hardest GMAT questions

Last edited by Bunuel on 23 Oct 2013, 06:21, edited 1 time in total.
Updated
Math Expert
Joined: 02 Sep 2009
Posts: 39062
Followers: 7756

Kudos [?]: 106576 [4] , given: 11628

Re: Challenge - divisibility and exponents (m05q33) [#permalink]

### Show Tags

25 Oct 2012, 05:23
4
KUDOS
Expert's post
bmwhype2 wrote:
Is $$4t^3 - 2t^2 - 8t + 16$$ divisible by $$t^2$$ ?

1. $$t \gt 1$$
2. $$t$$ is an even prime number

[Reveal] Spoiler: OA
B

Source: GMAT Club Tests - hardest GMAT questions

How can i solve this quickly and intuitively? I can certainly bang out the roots but i want to know the shortcut

BELOW IS REVISED VERSION OF THIS QUESTION:

If $$t$$ is a prime number, is $$32t^3 - 16t^2 + 8t - 4$$ divisible by $$t^2$$?

Since first two terms of $$32t^3 - 16t^2 + 8t - 4$$ are divisible by $$t^2$$ then the question becomes whether $$8t-4$$ is divisible by $$t^2$$.

(1) $$t^2 <25$$ --> since $$t$$ is a prime number then $$t=2$$ or $$t=3$$. If $$t=2$$ then $$8t-4$$ is divisible by $$t^2=4$$ but if $$t=3$$ then $$8t-4$$ is NOT divisible by $$t^2=9$$. Not sufficient.

(2) $$t^2-8t+12=0$$ --> $$t=2$$ ($$t=6$$ is not a valid solution since $$6$$ is not a prime number). Sufficient.

_________________
Senior Manager
Status: Student
Joined: 26 Aug 2013
Posts: 259
Location: France
Concentration: Finance, General Management
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
GPA: 3.44
Followers: 2

Kudos [?]: 63 [0], given: 401

Re: Challenge - divisibility and exponents (m05q33) [#permalink]

### Show Tags

24 Oct 2013, 02:03
With Stement one, you can either have t = 2 or 3

With stement two, after doing the easy maths, you have t = 2.

Answer B, statement two alone is sufficient!
_________________

Think outside the box

Re: Challenge - divisibility and exponents (m05q33)   [#permalink] 24 Oct 2013, 02:03
Similar topics Replies Last post
Similar
Topics:
s99-Manhattan Challenge 0 15 Sep 2011, 06:58
4 Challenges 1, Q10 4 03 Sep 2011, 11:04
1 NOT ABLE TO ACCESS the challenges 12 22 Sep 2008, 10:35
7 How good are the Verbal Challenges? 7 01 Feb 2010, 02:50
11 Challenge - Radical Exponents (m06q20) 27 04 Jun 2013, 08:48
Display posts from previous: Sort by

# Challenge - divisibility and exponents (m05q33)

Moderator: Bunuel

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.