Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 22 May 2017, 15:27

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Circle O is inscribed in equilateral triangle ABC, which is

Author Message
TAGS:

### Hide Tags

Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 80

Kudos [?]: 1074 [5] , given: 157

Circle O is inscribed in equilateral triangle ABC, which is [#permalink]

### Show Tags

26 Jun 2010, 07:52
5
KUDOS
11
This post was
BOOKMARKED
00:00

Difficulty:

55% (hard)

Question Stats:

61% (02:10) correct 39% (02:02) wrong based on 368 sessions

### HideShow timer Statistics

Circle O is inscribed in equilateral triangle ABC, which is itself inscribed in circle P. What is the area of circle P?

(1) The area of circle O is $$4$$pie.

(2) The area of triangle ABC is $$12\sqrt{3}$$.
[Reveal] Spoiler: OA

_________________

Last edited by Bunuel on 20 May 2014, 04:27, edited 1 time in total.
Edited the question.
Math Expert
Joined: 02 Sep 2009
Posts: 38798
Followers: 7713

Kudos [?]: 105764 [5] , given: 11581

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

26 Jun 2010, 09:01
5
KUDOS
Expert's post
10
This post was
BOOKMARKED
Hussain15 wrote:
Circle O is inscribed in equilateral triangle ABC, which is itself inscribed in circle P. What is the area of circle P?

(1) The area of circle O is $$4$$pie.

(2) The area of triangle ABC is $$12\sqrt{2}$$.

For equilateral triangle:
• The radius of the circumscribed circle is $$R=a*\frac{\sqrt{3}}{3}$$, (where $$a$$ is the side of equilateral triangle);
• The radius of the inscribed circle is $$r=a*\frac{\sqrt{3}}{6}$$;
• The area of equilateral triangle is $$A=a^2*\frac{\sqrt{3}}{4}$$.

We are asked to calculate area of bigger circle P - $$area_P=\pi{R^2}$$. Note that knowing any of the following: the side of equilateral triangle $$a$$, radius of the smaller circle O (as it gives $$a$$) or the radius of P itself is sufficient to calculate area of P.

(1) The area of circle O is $$4\pi$$ --> we can find $$r$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient.

(2) The area of triangle ABC is $$12\sqrt{3}$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient.

_________________
CEO
Joined: 17 Nov 2007
Posts: 3586
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 573

Kudos [?]: 3965 [2] , given: 360

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

26 Jun 2010, 09:31
2
KUDOS
Expert's post
if you don't have enough time to calculate or don't remember formulas, here is fast "intuitive" approach:

Let's imagine this highly fixed structure. If you change any linear size or area, the structure just scales. We can't change any part of the system without proportionally changing all others parts. Once you get this "intuitive" idea, any linear size or area of any part of the structure defines all other linear sizes and areas of the system. For instance, if we know the height of the triangle, it's enough to find all other parameters in the system. Both statements give us information about one of the parts of the system. So, it's D.

P.S. It's a lot of text but it took 10-20sec.
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 80

Kudos [?]: 1074 [1] , given: 157

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

26 Jun 2010, 10:41
1
KUDOS
I wish I could understand the system approach. Perhaps its the thinking of a MBA student, which I am unable to get.
I try to go through it again. Let's see!!!

Posted from my mobile device
_________________
CEO
Joined: 17 Nov 2007
Posts: 3586
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 573

Kudos [?]: 3965 [1] , given: 360

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

26 Jun 2010, 14:40
1
KUDOS
Expert's post
Sorry Hussain15, it's just what I was thinking when took a look at the problem. If it doesn't work for you, just leave it.
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Intern
Joined: 24 Nov 2008
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

26 Jun 2010, 16:56
D it is.

If a circle is inscribed in an equilateral triangle , you can find radius if the side if a triangle /height of the triangle is given or you can find side of a triangle if radius of the inscrbed circle is given

Even if you dont remember formulas as spelled out by Bunnel..you just need to remember the above fact.
Senior Manager
Joined: 25 Feb 2010
Posts: 461
Followers: 4

Kudos [?]: 92 [1] , given: 10

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

28 Jun 2010, 07:34
1
KUDOS
PriyaRai wrote:
D it is.

If a circle is inscribed in an equilateral triangle , you can find radius if the side if a triangle /height of the triangle is given or you can find side of a triangle if radius of the inscrbed circle is given

Even if you dont remember formulas as spelled out by Bunnel..you just need to remember the above fact.

Even I don't remember all the formulas used above, i was able to get the answer as D with little logic and knowledge.

Who wants to know all the formulas, some time you can do without that.

there's a saying:

Who wants to know the price of everything and value of nothing.

_________________

GGG (Gym / GMAT / Girl) -- Be Serious

Its your duty to post OA afterwards; some one must be waiting for that...

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7368
Location: Pune, India
Followers: 2281

Kudos [?]: 15071 [3] , given: 224

Re: Interesting Geometry Problem: Veritas [#permalink]

### Show Tags

10 Nov 2010, 18:51
3
KUDOS
Expert's post
walker wrote:
if you don't have enough time to calculate or don't remember formulas, here is fast "intuitive" approach:

Let's imagine this highly fixed structure. If you change any linear size or area, the structure just scales. We can't change any part of the system without proportionally changing all others parts. Once you get this "intuitive" idea, any linear size or area of any part of the structure defines all other linear sizes and areas of the system. For instance, if we know the height of the triangle, it's enough to find all other parameters in the system. Both statements give us information about one of the parts of the system. So, it's D.

P.S. It's a lot of text but it took 10-20sec.

I am myself a proponent of exactly this thinking. It makes perfect sense and takes a few seconds. And, you get very good at it with practice.
Something akin to this for the intuitively inclined:
"If there is only one way in which you can draw a geometry diagram with certain specifications, you will be able to find all other sides and angles."
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Manager Joined: 14 Apr 2011 Posts: 197 Followers: 2 Kudos [?]: 25 [0], given: 19 Re: Interesting Geometry Problem: Veritas [#permalink] ### Show Tags 17 Jul 2011, 13:55 Thanks for the question and the intuitive approach to solve it! I'll try to practice this approach on similar questions. _________________ Looking for Kudos Manager Joined: 07 Mar 2011 Posts: 52 Followers: 0 Kudos [?]: 9 [0], given: 3 Re: Interesting Geometry Problem: Veritas [#permalink] ### Show Tags 17 Jul 2011, 14:06 Answer D. A) if the area of circle is given. you can (r1)of the inscribed circle and from that the sides of the triangle. Sides of triangle can give you the radius (r2) of the outer circle, enough to answer the question B) area of triangle will give you the side and also the radius (r2) or circumscribed circle. so answer D GMAT Club Legend Joined: 09 Sep 2013 Posts: 15378 Followers: 648 Kudos [?]: 204 [0], given: 0 Re: Circle O is inscribed in equilateral triangle ABC, which is [#permalink] ### Show Tags 18 Jan 2014, 14:56 Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________ Manager Joined: 17 Mar 2014 Posts: 70 Followers: 0 Kudos [?]: 55 [1] , given: 38 Re: Interesting Geometry Problem: Veritas [#permalink] ### Show Tags 15 May 2014, 02:06 1 This post received KUDOS Bunuel wrote: Hussain15 wrote: Circle O is inscribed in equilateral triangle ABC, which is itself inscribed in circle P. What is the area of circle P? (1) The area of circle O is $$4$$pie. (2) The area of triangle ABC is $$12\sqrt{2}$$. For equilateral triangle: • The radius of the circumscribed circle is $$R=a*\frac{\sqrt{3}}{3}$$, (where $$a$$ is the side of equilateral triangle); • The radius of the inscribed circle is $$r=a*\frac{\sqrt{3}}{6}$$; • The area of equilateral triangle is $$A=a^2*\frac{\sqrt{3}}{4}$$. We are asked to calculate area of bigger circle P - $$area_P=\pi{R^2}$$. Note that knowing any of the following: the side of equilateral triangle $$a$$, radius of the smaller circle O (as it gives $$a$$) or the radius of P itself is sufficient to calculate area of P. (1) The area of circle O is $$4\pi$$ --> we can find $$r$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. (2) The area of triangle ABC is $$12\sqrt{2}$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. Answer: D. Dear Members, Has anyone noticed that both the statements contradict each other From statement 1 , we get $$a = 4\sqrt3$$ or $$a^2 = 48$$ from statement 2 we get $$12\sqrt2 = a^2 *\frac{\sqrt3}{4}$$ or $$a^2 = 48*\frac{\sqrt2}{sqrt3}$$ both the statements should give the same value for a and $$a^2$$ ,( side of the triangle). Let me know if I am misinterpreting anything. Although the answer is still D, both the statements shouldn't give different values for a. Intern Joined: 17 May 2014 Posts: 40 Followers: 0 Kudos [?]: 31 [0], given: 3 Re: Interesting Geometry Problem: Veritas [#permalink] ### Show Tags 20 May 2014, 03:37 qlx wrote: Bunuel wrote: Hussain15 wrote: Circle O is inscribed in equilateral triangle ABC, which is itself inscribed in circle P. What is the area of circle P? (1) The area of circle O is $$4$$pie. (2) The area of triangle ABC is $$12\sqrt{2}$$. For equilateral triangle: • The radius of the circumscribed circle is $$R=a*\frac{\sqrt{3}}{3}$$, (where $$a$$ is the side of equilateral triangle); • The radius of the inscribed circle is $$r=a*\frac{\sqrt{3}}{6}$$; • The area of equilateral triangle is $$A=a^2*\frac{\sqrt{3}}{4}$$. We are asked to calculate area of bigger circle P - $$area_P=\pi{R^2}$$. Note that knowing any of the following: the side of equilateral triangle $$a$$, radius of the smaller circle O (as it gives $$a$$) or the radius of P itself is sufficient to calculate area of P. (1) The area of circle O is $$4\pi$$ --> we can find $$r$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. (2) The area of triangle ABC is $$12\sqrt{2}$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. Answer: D. Dear Members, Has anyone noticed that both the statements contradict each other From statement 1 , we get $$a = 4\sqrt3$$ or $$a^2 = 48$$ from statement 2 we get $$12\sqrt2 = a^2 *\frac{\sqrt3}{4}$$ or $$a^2 = 48*\frac{\sqrt2}{sqrt3}$$ both the statements should give the same value for a and $$a^2$$ ,( side of the triangle). Let me know if I am misinterpreting anything. Although the answer is still D, both the statements shouldn't give different values for a. The DS question asks for data sufficiency and not the final answer. Two statements may give two different answers or same answers is not of any merit in these questions. Don't fall for such traps. Cheers!!! Math Expert Joined: 02 Sep 2009 Posts: 38798 Followers: 7713 Kudos [?]: 105764 [0], given: 11581 Re: Interesting Geometry Problem: Veritas [#permalink] ### Show Tags 20 May 2014, 04:27 mittalg wrote: qlx wrote: Bunuel wrote: For equilateral triangle: • The radius of the circumscribed circle is $$R=a*\frac{\sqrt{3}}{3}$$, (where $$a$$ is the side of equilateral triangle); • The radius of the inscribed circle is $$r=a*\frac{\sqrt{3}}{6}$$; • The area of equilateral triangle is $$A=a^2*\frac{\sqrt{3}}{4}$$. We are asked to calculate area of bigger circle P - $$area_P=\pi{R^2}$$. Note that knowing any of the following: the side of equilateral triangle $$a$$, radius of the smaller circle O (as it gives $$a$$) or the radius of P itself is sufficient to calculate area of P. (1) The area of circle O is $$4\pi$$ --> we can find $$r$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. (2) The area of triangle ABC is $$12\sqrt{2}$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. Answer: D. Dear Members, Has anyone noticed that both the statements contradict each other From statement 1 , we get $$a = 4\sqrt3$$ or $$a^2 = 48$$ from statement 2 we get $$12\sqrt2 = a^2 *\frac{\sqrt3}{4}$$ or $$a^2 = 48*\frac{\sqrt2}{sqrt3}$$ both the statements should give the same value for a and $$a^2$$ ,( side of the triangle). Let me know if I am misinterpreting anything. Although the answer is still D, both the statements shouldn't give different values for a. The DS question asks for data sufficiency and not the final answer. Two statements may give two different answers or same answers is not of any merit in these questions. Don't fall for such traps. Cheers!!! That's not true. On the GMAT, two data sufficiency statements always provide TRUE information and these statements never contradict each other or the stem. _________________ Math Expert Joined: 02 Sep 2009 Posts: 38798 Followers: 7713 Kudos [?]: 105764 [0], given: 11581 Re: Interesting Geometry Problem: Veritas [#permalink] ### Show Tags 20 May 2014, 04:28 qlx wrote: Bunuel wrote: Hussain15 wrote: Circle O is inscribed in equilateral triangle ABC, which is itself inscribed in circle P. What is the area of circle P? (1) The area of circle O is $$4$$pie. (2) The area of triangle ABC is $$12\sqrt{2}$$. For equilateral triangle: • The radius of the circumscribed circle is $$R=a*\frac{\sqrt{3}}{3}$$, (where $$a$$ is the side of equilateral triangle); • The radius of the inscribed circle is $$r=a*\frac{\sqrt{3}}{6}$$; • The area of equilateral triangle is $$A=a^2*\frac{\sqrt{3}}{4}$$. We are asked to calculate area of bigger circle P - $$area_P=\pi{R^2}$$. Note that knowing any of the following: the side of equilateral triangle $$a$$, radius of the smaller circle O (as it gives $$a$$) or the radius of P itself is sufficient to calculate area of P. (1) The area of circle O is $$4\pi$$ --> we can find $$r$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. (2) The area of triangle ABC is $$12\sqrt{2}$$ --> we can find $$a$$ --> we can find $$R$$. Sufficient. Answer: D. Dear Members, Has anyone noticed that both the statements contradict each other From statement 1 , we get $$a = 4\sqrt3$$ or $$a^2 = 48$$ from statement 2 we get $$12\sqrt2 = a^2 *\frac{\sqrt3}{4}$$ or $$a^2 = 48*\frac{\sqrt2}{sqrt3}$$ both the statements should give the same value for a and $$a^2$$ ,( side of the triangle). Let me know if I am misinterpreting anything. Although the answer is still D, both the statements shouldn't give different values for a. You are right. I guess the second statement should read: he area of triangle ABC is $$12\sqrt{3}$$. Edited the question. Thank you. _________________ GMAT Club Legend Joined: 09 Sep 2013 Posts: 15378 Followers: 648 Kudos [?]: 204 [0], given: 0 Re: Circle O is inscribed in equilateral triangle ABC, which is [#permalink] ### Show Tags 08 Sep 2015, 19:49 Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________ SVP Joined: 17 Jul 2014 Posts: 2494 Location: United States (IL) Concentration: Finance, Economics Schools: Stanford '19 (D) GMAT 1: 650 Q49 V30 GPA: 3.92 WE: General Management (Transportation) Followers: 26 Kudos [?]: 339 [0], given: 166 Circle O is inscribed in equilateral triangle ABC, which is [#permalink] ### Show Tags 20 Oct 2015, 09:28 how do you solve, in theory, to come to the conclusion that radius of the circumscribed circle is a*sqrt(3)/3? is it because the diameter will be 1/2 time of the side? in this case, the diameter will be a/2, and R is a/4, where a is the side of the equilateral triangle. knowing that the triangle is inscribed in a circle, we can draw 2 radii which will connect with one side of the triangle, creating a 30-30-120 triangle. Then, we can draw a perpendicular, and get 2 triangles of 30-60-90, in which the longest leg will be a/2, where a is the side of the equilateral triangle. is my way of thinking right? in case we know area of the small circle, we can find the side of the equilateral triangle, and thus, can find the radius of the big circle. in case we know the area of the equilateral triangle, we can deduct that A=[S^2 sqrt(3)]/4. Now, we can find the side of the equilateral triangle, and hence, find the radius of the big circle. I believe this is more a 700 level question Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7368 Location: Pune, India Followers: 2281 Kudos [?]: 15071 [2] , given: 224 Re: Circle O is inscribed in equilateral triangle ABC, which is [#permalink] ### Show Tags 21 Oct 2015, 23:45 2 This post received KUDOS Expert's post mvictor wrote: how do you solve, in theory, to come to the conclusion that radius of the circumscribed circle is a*sqrt(3)/3? is it because the diameter will be 1/2 time of the side? in this case, the diameter will be a/2, and R is a/4, where a is the side of the equilateral triangle. knowing that the triangle is inscribed in a circle, we can draw 2 radii which will connect with one side of the triangle, creating a 30-30-120 triangle. Then, we can draw a perpendicular, and get 2 triangles of 30-60-90, in which the longest leg will be a/2, where a is the side of the equilateral triangle. is my way of thinking right? in case we know area of the small circle, we can find the side of the equilateral triangle, and thus, can find the radius of the big circle. in case we know the area of the equilateral triangle, we can deduct that A=[S^2 sqrt(3)]/4. Now, we can find the side of the equilateral triangle, and hence, find the radius of the big circle. I believe this is more a 700 level question Check out these posts. They discuss relations between circles and inscribed polygons (including equilateral triangle) http://www.veritasprep.com/blog/2013/06 ... d-circles/ http://www.veritasprep.com/blog/2013/07 ... relations/ Once you understand these relations, you will jump to (D) immediately. _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 3276
GPA: 3.82
Followers: 235

Kudos [?]: 2009 [0], given: 0

Re: Circle O is inscribed in equilateral triangle ABC, which is [#permalink]

### Show Tags

22 Oct 2015, 13:32
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Circle O is inscribed in equilateral triangle ABC, which is itself inscribed in circle P. What is the area of circle P?

(1) The area of circle O is 4 pie.

(2) The area of triangle ABC is 123 √ .

In the original condition, the there is only one variable (radius), and we need one equation to solve for the question.
2 equations are given from the 2 conditions, so there is high chance (D) will be our answer; in fact, (D) is our answer.

For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
“Receive 5 Math Questions & Solutions Daily”
Unlimited Access to over 120 free video lessons - try it yourself

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15378
Followers: 648

Kudos [?]: 204 [0], given: 0

Re: Circle O is inscribed in equilateral triangle ABC, which is [#permalink]

### Show Tags

16 Feb 2017, 19:36
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: Circle O is inscribed in equilateral triangle ABC, which is   [#permalink] 16 Feb 2017, 19:36
Similar topics Replies Last post
Similar
Topics:
4 An equilateral triangle is inscribed in a circle, as shown above. What 5 18 May 2017, 02:47
3 If a circle is inscribed in an equilateral triangle, what is the area 4 03 Mar 2016, 04:38
38 In the figure shown, triangle ABC is inscribed in the circle. What is 6 27 Sep 2016, 07:06
7 An equilateral triangle ABC is inscribed in the circle. If 4 01 Oct 2016, 21:05
16 Equilateral triangle BDF is inscribed in equilateral triangl 13 03 May 2016, 00:03
Display posts from previous: Sort by

# Circle O is inscribed in equilateral triangle ABC, which is

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.