GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 16 Nov 2018, 10:38

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
• ### Free GMAT Strategy Webinar

November 17, 2018

November 17, 2018

07:00 AM PST

09:00 AM PST

Nov. 17, 7 AM PST. Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
• ### GMATbuster's Weekly GMAT Quant Quiz # 9

November 17, 2018

November 17, 2018

09:00 AM PST

11:00 AM PST

Join the Quiz Saturday November 17th, 9 AM PST. The Quiz will last approximately 2 hours. Make sure you are on time or you will be at a disadvantage.

# Cyclicity and remainders

Author Message
TAGS:

### Hide Tags

Current Student
Joined: 23 Jul 2013
Posts: 304

### Show Tags

18 Sep 2013, 12:38
2
Hey guys, and calling for the legend Bunuel!

So I am learning the cyclicity and finding a units digit trick. Very neat. Only thing I am a bit confused on is if the remainder is zero.

For instance, 17^12 is 7^12. 7 has a cyclicity of 4. 12 divided by 4 yields no remainder. So does that mean the unit digit is just the 4th in the cycle, which in this case is 1?

Thanks!
Magoosh GMAT Instructor
Joined: 28 Dec 2011
Posts: 4488

### Show Tags

18 Sep 2013, 16:04
2
TheLostOne wrote:
Hey guys, and calling for the legend Bunuel!

So I am learning the cyclicity and finding a units digit trick. Very neat. Only thing I am a bit confused on is if the remainder is zero.

For instance, 17^12 is 7^12. 7 has a cyclicity of 4. 12 divided by 4 yields no remainder. So does that mean the unit digit is just the 4th in the cycle, which in this case is 1?

Thanks!

Dear TheLostOne,
I'm happy to help with this.

First of all, here's a blog you may find informative.
http://magoosh.com/gmat/2013/gmat-quant ... questions/

Let's think about this. The powers of 7 indeed have a cycle of 4 --- this means
7^1 has a units digit of 7
7^2 has a units digit of 9
7^3 has a units digit of 3
7^4 has a units digit of 1
7^5 has a units digit of 7
7^6 has a units digit of 9
7^7 has a units digit of 3
7^8 has a units digit of 1
That's a cycle of 4. Notice, at every exponent that's a multiple of four, the unit digit is 1.

When you divide by 4 and get no remainder, you are at a multiple of four. Therefore, the units digit it 1. Therefore, 7^12 (or 17^12 or 1037^12) would have to have a units digit of 1. You are perfectly correct.

If you think about it, when the power is a multiple of the cycle, the units digit would have to be 1 for any base, because having a units digit of 1 allows the next power to have the same units digit as the base.

Does all this make sense?
Mike
_________________

Mike McGarry
Magoosh Test Prep

Education is not the filling of a pail, but the lighting of a fire. — William Butler Yeats (1865 – 1939)

Current Student
Joined: 23 Jul 2013
Posts: 304

### Show Tags

19 Sep 2013, 05:50
mikemcgarry wrote:
TheLostOne wrote:
Hey guys, and calling for the legend Bunuel!

So I am learning the cyclicity and finding a units digit trick. Very neat. Only thing I am a bit confused on is if the remainder is zero.

For instance, 17^12 is 7^12. 7 has a cyclicity of 4. 12 divided by 4 yields no remainder. So does that mean the unit digit is just the 4th in the cycle, which in this case is 1?

Thanks!

Dear TheLostOne,
I'm happy to help with this.

First of all, here's a blog you may find informative.
http://magoosh.com/gmat/2013/gmat-quant ... questions/

Let's think about this. The powers of 7 indeed have a cycle of 4 --- this means
7^1 has a units digit of 7
7^2 has a units digit of 9
7^3 has a units digit of 3
7^4 has a units digit of 1
7^5 has a units digit of 7
7^6 has a units digit of 9
7^7 has a units digit of 3
7^8 has a units digit of 1
That's a cycle of 4. Notice, at every exponent that's a multiple of four, the unit digit is 1.

When you divide by 4 and get no remainder, you are at a multiple of four. Therefore, the units digit it 1. Therefore, 7^12 (or 17^12 or 1037^12) would have to have a units digit of 1. You are perfectly correct.

If you think about it, when the power is a multiple of the cycle, the units digit would have to be 1 for any base, because having a units digit of 1 allows the next power to have the same units digit as the base.

Does all this make sense?
Mike

Indeed it does!

Thanks.
Non-Human User
Joined: 09 Sep 2013
Posts: 8786

### Show Tags

23 Sep 2017, 23:30
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: Cyclicity and remainders &nbs [#permalink] 23 Sep 2017, 23:30
Display posts from previous: Sort by