MathRevolution wrote:

[

Math Revolution GMAT math practice question]

Does \(y=ax^2+bx+c\) intersect the x-axis?

\(1) a<0\)

\(2) c>0\)

\(?\,\,\,\,:\,\,\,\,a{x^2} + bx + c = 0\,\,\,\,{\text{has}}\,\,\left( {{\text{real}}} \right)\,\,{\text{roots?}}\)

\(\left( 1 \right)\,\,\,a < 0\,\,\,\left\{ \begin{gathered}

\,{\text{Take}}\,\,\left( {a,b,c} \right) = \left( { - 1,0,0} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{Yes}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\,\left[ {y = - {x^2}\,\,\,{\text{parabola}}} \right] \hfill \\

\,{\text{Take}}\,\,\left( {a,b,c} \right) = \left( { - 1,0, - 1} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{No}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\,\left[ {y = - {x^2} - 1\,\,\,{\text{parabola}}} \right] \hfill \\

\end{gathered} \right.\)

\(\left( 2 \right)\,\,\,c > 0\,\,\,\left\{ \begin{gathered}

\,{\text{Take}}\,\,\left( {a,b,c} \right) = \left( {0,1,1} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{Yes}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\,\left[ {y = x + 1\,\,{\text{line}}} \right] \hfill \\

\,{\text{Take}}\,\,\left( {a,b,c} \right) = \left( {1,0,1} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{No}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\,\left[ {y = {x^2} + 1\,\,\,{\text{parabola}}} \right] \hfill \\

\end{gathered} \right.\)

\(\left( {1 + 2} \right)\,\,\,\,a \ne 0\,\,\,\,\, \Rightarrow \,\,\,\,\,?\,\,\,\,:\,\,\,\,\Delta = {b^2} - 4ac\,\,\,\mathop \geqslant \limits^? \,\,\,0\)

\(\left. \begin{gathered}

a < 0\,\, \hfill \\

c > 0 \hfill \\

\end{gathered} \right\}\,\,\,\,\, \Rightarrow \,\,\,\, - 4ac > 0\,\,\,\,\,\,\,\mathop \Rightarrow \limits^{{b^2}\,\, \geqslant \,\,0} \,\,\,\,\Delta > 0\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{SUFF}}.\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

fskilnik.

_________________

Fabio Skilnik :: https://GMATH.net (Math for the GMAT) or GMATH.com.br (Portuguese version)

Course release PROMO : finish our test drive till 30/Nov with (at least) 50 correct answers out of 92 (12-questions Mock included) to gain a 50% discount!