Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

07 Jan 2013, 06:55

6

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

75% (02:22) correct
25% (01:56) wrong based on 221 sessions

HideShow timer Statistics

Each digit 1 through 5 is used exactly once to create a 5-digit integer. If the 3 and the 4 cannot be adjacent digits in the integer, how many 5-digit integers are possible?

Official Answer and Stats are available only to registered users. Register/Login.

_________________

Don't give up on yourself ever. Period. Beat it, no one wants to be defeated (My journey from 570 to 690): http://gmatclub.com/forum/beat-it-no-one-wants-to-be-defeated-journey-570-to-149968.html

Each digit 1 through 5 is used exactly once to create a 5-digit integer. If the 3 and the 4 cannot be adjacent digits in the integer, how many 5-digit integers are possible?

(A) 48 (B) 66 (C) 72 (D) 78 (E) 90

Such questions are best solved using the complement approach. You need to find arrangements in which 3 and 4 are not adjacent. Instead, work on finding the arrangements in which they are together since it is much easier to do.

Number of arrangements using 5 distinct digits = 5! Number of arrangements in which 3 and 4 are adjacent - consider 3 and 4 together as one group. Now you have 4 numbers/groups to arrange which can be done in 4! ways. In each of these arrangements, 3 and 4 can be arranged as 34 or 43. So we need to multiply 4! by 2 to give all arrangements where 3 and 4 are adjacent to each other e.g. 34251, 43251, 23415, 32415 ... Number of arrangements in which 3 and 4 are not adjacent = 5! - 2*4! = 72

Re: Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

07 Jan 2013, 07:10

Total number of 5 digit numbers that can be formed = 5! = 120. Total number of 5 digit numbers in which 3 and 4 are adjacent = 48. This can be calculated by taking 3 and 4 as a pair and considering positions where they can appear. Number of 5 digit numbers in which 3 and 4 are not adjacent = Total number of 5 digit numbers - Total number of 5 digit numbers in which 3 and 4 are adjacent. Ans = 120 - 48 = 72.

Re: Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

14 Jan 2013, 04:46

daviesj wrote:

Each digit 1 through 5 is used exactly once to create a 5-digit integer. If the 3 and the 4 cannot be adjacent digits in the integer, how many 5-digit integers are possible?

(A) 48 (B) 66 (C) 72 (D) 78 (E) 90

Total number of arrangements of 5 digit integer = 5! = 120

Let 3 and 4 be single digit like { 1 2 X 5 } This set arrangement is 4! = 24 As 3 and 4 can be interchanged between them 2(24) = 48

So 120-48 =72 Pls correct me if my solution is wrong!
_________________

GMAT - Practice, Patience, Persistence Kudos if u like

Re: Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

14 Jan 2013, 12:45

daviesj wrote:

Each digit 1 through 5 is used exactly once to create a 5-digit integer. If the 3 and the 4 cannot be adjacent digits in the integer, how many 5-digit integers are possible?

(A) 48 (B) 66 (C) 72 (D) 78 (E) 90

combinatorics and permutations eish..how do you guys make out on which way to use,whether combination or permutation,when you have such problem to solve?..when do you use permutation and when do you use combination?

Each digit 1 through 5 is used exactly once to create a 5-digit integer. If the 3 and the 4 cannot be adjacent digits in the integer, how many 5-digit integers are possible?

(A) 48 (B) 66 (C) 72 (D) 78 (E) 90

combinatorics and permutations eish..how do you guys make out on which way to use,whether combination or permutation,when you have such problem to solve?..when do you use permutation and when do you use combination?

Re: Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

28 Nov 2014, 05:51

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

01 Sep 2016, 00:35

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Each digit 1 through 5 is used exactly once to create a 5-di [#permalink]

Show Tags

12 Nov 2016, 05:53

VeritasPrepKarishma wrote:

Now you have 4 numbers/groups to arrange which can be done in 4! ways.

VeritasPrepKarishma can you please explain how you draw the conclusion that there are 4 numbers/groups to arrange? There are only 2 numbers and the second part of your answer addresses switching their order. I am not understanding this conclusion. Thank you!

Now you have 4 numbers/groups to arrange which can be done in 4! ways.

VeritasPrepKarishma can you please explain how you draw the conclusion that there are 4 numbers/groups to arrange? There are only 2 numbers and the second part of your answer addresses switching their order. I am not understanding this conclusion. Thank you!

You need to create a 5 digit integer using digits from 1 to 5. You will do that in various ways such as 12345, 23145, 45231 etc

If you club 3 and 4 together, you get a group {34}.

Now you have 3 leftover digits: 1, 2 and 5. You have arrange 1, 2, 5 and {34}. So you have to arrange 4 digits/groups. You can do this in various ways such as 12534, 21345 etc...

Since instead of {34}, you can have {43} too, you multiply by 2.
_________________

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...