It is currently 23 Jun 2017, 17:25

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Find the value of

Author Message
TAGS:

### Hide Tags

Intern
Joined: 22 Jun 2012
Posts: 13
Location: India
GPA: 3.09

### Show Tags

28 Jun 2012, 03:10
7
KUDOS
45
This post was
BOOKMARKED
00:00

Difficulty:

85% (hard)

Question Stats:

46% (02:22) correct 54% (01:16) wrong based on 893 sessions

### HideShow timer Statistics

Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)
[Reveal] Spoiler: OA

_________________

\sqrt{[square_root][square_root][square_root][square_root][square_root]}[/square_root][/square_root][/square_root][/square_root][/square_root]????????

Last edited by Bunuel on 27 May 2013, 12:12, edited 2 times in total.
Edited the question
Math Expert
Joined: 02 Sep 2009
Posts: 39622
Re: Find the value of [#permalink]

### Show Tags

28 Jun 2012, 03:19
17
KUDOS
Expert's post
12
This post was
BOOKMARKED
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

Note that $$\sqrt{x^2}=|x|$$.

$$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}=\frac{|1+a|+|a-1|}{|1+a|-|a-1|}$$

Now, since $$0<a<1$$, then: $$|1+a|=1+a$$ and $$|a-1|=-(a-1)=1-a$$.

Hence $$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1}{a}$$.

Hope it's clear.
_________________
Intern
Joined: 15 May 2012
Posts: 41
Re: Find the value of [#permalink]

### Show Tags

30 Jun 2012, 16:15
Hi Bunuel,
Could you please explain me how a-1 becomes 1-a in the numerator and denominator in the second part of the problem?
Thanks!
Manager
Joined: 15 Apr 2012
Posts: 93
Concentration: Technology, Entrepreneurship
GMAT 1: 460 Q38 V17
GPA: 3.56
Re: Find the value of [#permalink]

### Show Tags

30 Jun 2012, 21:39
Bunuel wrote:
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

Note that $$\sqrt{x^2}=|x|$$.

$$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}=\frac{|1+a|+|a-1|}{|1+a|-|a-1|}$$

Now, since $$0<a<1$$, then: $$|1+a|=1+a$$ and $$|a-1|=-(a-1)=1-a$$.

Hence $$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1}{a}$$.

Hope it's clear.

As 0<a<1
Let's say a =0.5 then (1+0.5+0.5-1)/(1+0.5-0.5+1) = 0.5 ..the answer is A...I am not getting it ...Can you explain a bit more ?Thnaks
Senior Manager
Joined: 06 Aug 2011
Posts: 400
Re: Find the value of [#permalink]

### Show Tags

01 Jul 2012, 03:02
Bunuel wrote:
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

Note that $$\sqrt{x^2}=|x|$$.

$$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}=\frac{|1+a|+|a-1|}{|1+a|-|a-1|}$$

Now, since $$0<a<1$$, then: $$|1+a|=1+a$$ and $$|a-1|=-(a-1)=1-a$$.

Hence $$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1}{a}$$.

Hope it's clear.

Bunuel ..i ddnt get it.. how did u get the 1/a in the end ?? can u plz explain bunuel..? m trying it but i cant get 1/a in the end?
_________________

Bole So Nehal.. Sat Siri Akal.. Waheguru ji help me to get 700+ score !

Math Expert
Joined: 02 Sep 2009
Posts: 39622
Re: Find the value of [#permalink]

### Show Tags

01 Jul 2012, 03:06
Expert's post
1
This post was
BOOKMARKED
sanjoo wrote:
Bunuel wrote:
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

Note that $$\sqrt{x^2}=|x|$$.

$$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}=\frac{|1+a|+|a-1|}{|1+a|-|a-1|}$$

Now, since $$0<a<1$$, then: $$|1+a|=1+a$$ and $$|a-1|=-(a-1)=1-a$$.

Hence $$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1}{a}$$.

Hope it's clear.

Bunuel ..i ddnt get it.. how did u get the 1/a in the end ?? can u plz explain bunuel..? m trying it but i cant get 1/a in the end?

$$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1+a+1-a}{1+a-1+a}=\frac{2}{2a}=\frac{1}{a}$$.

Hope it's clear now.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 39622
Re: Find the value of [#permalink]

### Show Tags

01 Jul 2012, 03:20
5
KUDOS
Expert's post
1
This post was
BOOKMARKED
sharmila79 wrote:
Hi Bunuel,
Could you please explain me how a-1 becomes 1-a in the numerator and denominator in the second part of the problem?
Thanks!

Check this: math-absolute-value-modulus-86462.html

Absolute value properties:
When $$x\leq{0}$$ then $$|x|=-x$$, or more generally when $$some \ expression\leq{0}$$ then $$|some \ expression|={-(some \ expression)}$$. For example: $$|-5|=5=-(-5)$$;

When $$x\geq{0}$$ then $$|x|=x$$, or more generally when $$some \ expression\geq{0}$$ then $$|some \ expression|={some \ expression}$$. For example: $$|5|=5$$;

So, for our case, since $$a<1$$, then $$a-1<0$$ hence according to the above $$|a-1|=-(a-1)=1-a$$.

Hope it helps.
_________________
Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GPA: 3.23
Re: Find the value of [#permalink]

### Show Tags

06 Dec 2012, 01:01
2
KUDOS
Remember these things regarding absolute values in the GMAT
(1) $$\sqrt{x^2}=|x|$$
(2) |x| = x ==> if x > 0
(3) |x| = -x ==> if x < 0

Golden rules! Must memorize!

Solution:
***Transform the equation:
$$\frac{|1+a| + |a-1|}{|1+a| - |a-1|}$$

***Since we know that a is a positive fraction as given: 0<a<1
***This means 1+a is always positive. Using property#2 above, |1+a| = 1+a
***For a-1 = (fraction) - 1, we know that a-1 is negative. Using property #3, |a-1| = -(a-1)

Combine all that:

$$\frac{(1+a) + (-a+1)}{(1+a) - (-a+1)}$$
$$\frac{2}{2a}$$
$$\frac{1}{a}$$

_________________

Impossible is nothing to God.

Manager
Joined: 06 Jun 2010
Posts: 160
Re: Find the value of [#permalink]

### Show Tags

27 Mar 2013, 03:37
since its mentioned that a is between 0 and 1,we can directly use any of the numbers,say a=1/2.Substitute this in the equation,in the end ul get 2 as the answer.
Looking at ans choices,since we started out with a=1/2, 1/a gives us our answer that is 2
Intern
Joined: 28 Jan 2013
Posts: 9
Location: India
Schools: HBS '16, HEC Jan'16
GPA: 3
WE: Marketing (Manufacturing)
Re: Find the value of [#permalink]

### Show Tags

27 May 2013, 11:28
Bunuel,

When to use

1.\sqrt{x} = Mod(X) or

2. \sqrt{X} = X

Here u have used \sqrt{x} = Mod(X) while in the problem below:

If \sqrt{3-2x}= \sqrt{2x} +1 then 4x2 =

(A) 1
(B) 4
(C) 2 − 2x
(D) 4x − 2
(E) 6x − 1

you have used \sqrt{X} = X

Why so?
Math Expert
Joined: 02 Sep 2009
Posts: 39622
Re: Find the value of [#permalink]

### Show Tags

27 May 2013, 11:38
1
KUDOS
Expert's post
karjan07 wrote:
Bunuel,

When to use

1.\sqrt{x} = Mod(X) or

2. \sqrt{X} = X

Here u have used \sqrt{x} = Mod(X) while in the problem below:

If \sqrt{3-2x}= \sqrt{2x} +1 then 4x2 =

(A) 1
(B) 4
(C) 2 − 2x
(D) 4x − 2
(E) 6x − 1

you have used \sqrt{X} = X

Why so?

$$\sqrt{x^2}=|x|$$.

If $$x\leq{0}$$. then $$\sqrt{x^2}=|x|=-x$$. For example if $$x=-5$$, then $$\sqrt{(-5)^2}=\sqrt{25}=5=|x|=-x$$.

If $$x\geq{0}$$, then $$\sqrt{x^2}=|x|=x$$. For example if $$x=5$$, then $$\sqrt{5^2}=\sqrt{25}=5=|x|=x$$.

I guess you are talking about the following problem: if-root-3-2x-root-2x-1-then-4x-135539.html Where did I write that $$\sqrt{x^2}=x$$?

_________________
Intern
Joined: 28 Jan 2013
Posts: 9
Location: India
Schools: HBS '16, HEC Jan'16
GPA: 3
WE: Marketing (Manufacturing)
Re: Find the value of [#permalink]

### Show Tags

27 May 2013, 11:52
Bunuel wrote:
karjan07 wrote:
Bunuel,

When to use

1.\sqrt{x} = Mod(X) or

2. \sqrt{X} = X

Here u have used \sqrt{x} = Mod(X) while in the problem below:

If \sqrt{3-2x}= \sqrt{2x} +1 then 4x2 =

(A) 1
(B) 4
(C) 2 − 2x
(D) 4x − 2
(E) 6x − 1

you have used \sqrt{X} = X

Why so?

$$\sqrt{x^2}=|x|$$.

If $$x\leq{0}$$. then $$\sqrt{x^2}=|x|=-x$$. For example if $$x=-5$$, then $$\sqrt{(-5)^2}=\sqrt{25}=5=|x|=-x$$.

If $$x\geq{0}$$, then $$\sqrt{x^2}=|x|=x$$. For example if $$x=5$$, then $$\sqrt{5^2}=\sqrt{25}=5=|x|=x$$.

I guess you are talking about the following problem: Where did I write that $$\sqrt{x^2}=x$$?

Got it... My mistake... was confused on $$\sqrt{(3x-2)}$$^2 = $$3-2x$$

Probably should sleep now !!
Math Expert
Joined: 02 Sep 2009
Posts: 39622
Re: Find the value of [#permalink]

### Show Tags

27 May 2013, 12:01
1
KUDOS
Expert's post
karjan07 wrote:
Bunuel wrote:
karjan07 wrote:
Bunuel,

When to use

1.\sqrt{x} = Mod(X) or

2. \sqrt{X} = X

Here u have used \sqrt{x} = Mod(X) while in the problem below:

If \sqrt{3-2x}= \sqrt{2x} +1 then 4x2 =

(A) 1
(B) 4
(C) 2 − 2x
(D) 4x − 2
(E) 6x − 1

you have used \sqrt{X} = X

Why so?

$$\sqrt{x^2}=|x|$$.

If $$x\leq{0}$$. then $$\sqrt{x^2}=|x|=-x$$. For example if $$x=-5$$, then $$\sqrt{(-5)^2}=\sqrt{25}=5=|x|=-x$$.

If $$x\geq{0}$$, then $$\sqrt{x^2}=|x|=x$$. For example if $$x=5$$, then $$\sqrt{5^2}=\sqrt{25}=5=|x|=x$$.

I guess you are talking about the following problem: Where did I write that $$\sqrt{x^2}=x$$?

Got it... My mistake... was confused on $$\sqrt{(3x-2)}$$^2 = $$3-2x$$

Probably should sleep now !!

Right.

In that question we have $$(\sqrt{3-2x})^2$$, which equals to $$3-2x$$, the same way as $$(\sqrt{x})^2=x$$.

If it were $$\sqrt{(3-2x)^2}$$, then it would equal to $$|3-2x|$$, the same way as $$\sqrt{x^2}=|x|$$.

Check here: if-rot-3-2x-root-2x-1-then-4x-107925.html#p1223681

Hope it's clear.
_________________
Intern
Joined: 28 Jan 2013
Posts: 9
Location: India
Schools: HBS '16, HEC Jan'16
GPA: 3
WE: Marketing (Manufacturing)
Re: Find the value of [#permalink]

### Show Tags

27 May 2013, 12:38
Thanks... Its crystal clear now...
Senior Manager
Joined: 13 May 2013
Posts: 469
Re: Find the value of [#permalink]

### Show Tags

29 May 2013, 12:45
Hello

I am having a tough time figuring out why |a-1| = -(a-1)

I know that for some absolute value problems, you test the positive and negative cases of a number. For example, 4=|2x+3| I would solve for:

I. 4=2x+3
II. 4=-(2x+3)

But I am not sure why you are deriving |a-1| = -(a-1) here. Does it have something to do with a being positive? (i.e. 0<a<1)

Also, in another problem I just solved, I ended up with |5-x| = |x-5| which ended up being |5-x| = |5-x| Why wouldn't |a+1| = |a-1|

Thanks as always!

Bunuel wrote:
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

Note that $$\sqrt{x^2}=|x|$$.

$$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}=\frac{|1+a|+|a-1|}{|1+a|-|a-1|}$$

Now, since $$0<a<1$$, then: $$|1+a|=1+a$$ and $$|a-1|=-(a-1)=1-a$$.

Hence $$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1}{a}$$.

Hope it's clear.
Senior Manager
Joined: 13 May 2013
Posts: 469
Re: Find the value of [#permalink]

### Show Tags

29 May 2013, 13:01
So...0<a<1 which means that |a+1| will always be positive. However |a-1| = |some negative value| so, |some negative value| = -(some negative value) therefore, in this case:

|a-1| = -(a-1) ==> =1-a.

Is this correct?

Bunuel wrote:
sharmila79 wrote:
Hi Bunuel,
Could you please explain me how a-1 becomes 1-a in the numerator and denominator in the second part of the problem?
Thanks!

Check this: math-absolute-value-modulus-86462.html

Absolute value properties:
When $$x\leq{0}$$ then $$|x|=-x$$, or more generally when $$some \ expression\leq{0}$$ then $$|some \ expression|\leq{-(some \ expression)}$$. For example: $$|-5|=5=-(-5)$$;

When $$x\geq{0}$$ then $$|x|=x$$, or more generally when $$some \ expression\geq{0}$$ then $$|some \ expression|\leq{some \ expression}$$. For example: $$|5|=5$$;

So, for our case, since $$a<1$$, then $$a-1<0$$ hence according to the above $$|a-1|=-(a-1)=1-a$$.

Hope it helps.
Math Expert
Joined: 02 Sep 2009
Posts: 39622
Re: Find the value of [#permalink]

### Show Tags

29 May 2013, 13:03
1
KUDOS
Expert's post
WholeLottaLove wrote:
Hello

I am having a tough time figuring out why |a-1| = -(a-1)

I know that for some absolute value problems, you test the positive and negative cases of a number. For example, 4=|2x+3| I would solve for:

I. 4=2x+3
II. 4=-(2x+3)

But I am not sure why you are deriving |a-1| = -(a-1) here. Does it have something to do with a being positive? (i.e. 0<a<1)

Also, in another problem I just solved, I ended up with |5-x| = |x-5| which ended up being |5-x| = |5-x| Why wouldn't |a+1| = |a-1|

Thanks as always!

Bunuel wrote:
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

Note that $$\sqrt{x^2}=|x|$$.

$$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}=\frac{|1+a|+|a-1|}{|1+a|-|a-1|}$$

Now, since $$0<a<1$$, then: $$|1+a|=1+a$$ and $$|a-1|=-(a-1)=1-a$$.

Hence $$\frac{|1+a|+|a-1|}{|1+a|-|a-1|}=\frac{(1+a)+(1-a)}{(1+a)-(1-a)}=\frac{1}{a}$$.

Hope it's clear.

If $$x\leq{0}$$. then $$\sqrt{x^2}=|x|=-x$$. For example if $$x=-5$$, then $$\sqrt{(-5)^2}=\sqrt{25}=5=|x|=-x$$.

If $$x\geq{0}$$, then $$\sqrt{x^2}=|x|=x$$. For example if $$x=5$$, then $$\sqrt{5^2}=\sqrt{25}=5=|x|=x$$.
___________________________________

We are given that $$0<a<1$$.

For this range $$1+a>0$$, so $$|1+a|=|positive|=1+a$$
For this range $$a-1<0$$, so $$|a-1|=|negative|=-(a-1)=1-a$$.

Hope it's clear.
_________________
Senior Manager
Joined: 13 May 2013
Posts: 469
Re: Find the value of [#permalink]

### Show Tags

29 May 2013, 13:11
Got it! Thanks a lot! Feels great to finally get it.
Manager
Joined: 04 Mar 2013
Posts: 88
Location: India
Concentration: General Management, Marketing
GPA: 3.49
WE: Web Development (Computer Software)
Re: Find the value of [#permalink]

### Show Tags

03 Jul 2013, 07:21
manimani wrote:
Find the value of $$\frac{\sqrt{(1+a)^2} + \sqrt{(a-1)^2}}{\sqrt{(1+a)^2} - \sqrt{(a-1)^2}}$$ for 0<a<1

A. a
B. 1/a
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

remember BODMAS,

so now breakup we get 2/2a

done

logic + Basic = Magic in Gmat
Senior Manager
Joined: 13 May 2013
Posts: 469
Re: Find the value of [#permalink]

### Show Tags

09 Jul 2013, 17:45
Luckily for us, every value here is the square root of a square so we can take the absolute value of each one:

What is the value of: |1+a |+ |a-1| / |1+a| - |a-1| for 0<a<1

lets try plugging in a value for a: a=1/2

|1+a |+ |a-1| / |1+a| - |a-1|
|1+1/2| + |1/2-1| / |1+1/2| - |1/2-1|
|1.5| + |.5| / |1.5| - |.5|
2\1 = 2

A. a .5
B. 1/a 1/.5 = 2
C. (a-1)/(a+1)
D. (a+1)/(a-1)
E. a/(a-1)

(B)

Also, another way we could solve:

|1+a |+ |a-1| / |1+a| - |a-1|
(1+a) + -(a-1) / (1+a) - -(a-1)
1+a -a+1 / 1+a - (-a+1)
1+a -a+1 / 1+a +a-1
2/2a = 1/a
Re: Find the value of   [#permalink] 09 Jul 2013, 17:45

Go to page    1   2    Next  [ 27 posts ]

Similar topics Replies Last post
Similar
Topics:
3 Find the maximum value of n such that 50! is perfectly divisible 3 27 Feb 2017, 20:34
12 Find a possible value of a+b given the equations 3 15 Nov 2016, 12:19
1 Find all possible values of X 7 11 Jan 2012, 10:15
49 Find the minimum value of an expression 2 (x^2) + 3 (y^2) - 13 27 Feb 2017, 09:48
26 Find the value of x 19 08 Jul 2016, 22:06
Display posts from previous: Sort by