It is currently 18 Nov 2017, 03:30

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Five pieces of wood have an average length of 124cm and a

Author Message
TAGS:

### Hide Tags

SVP
Joined: 29 Aug 2007
Posts: 2471

Kudos [?]: 855 [0], given: 19

Re: Five pieces of wood GMAT Prep PS [#permalink]

### Show Tags

18 Mar 2009, 22:39
lav wrote:
@GMAT tiger can you pls explain more ,

why have you taken three nos to be 143 ?

this is the dist: a, a, 140, 140, 140. this way only "a's" value can be max.

so 2a + 140x3 = 124x5
a = 100.
_________________

Gmat: http://gmatclub.com/forum/everything-you-need-to-prepare-for-the-gmat-revised-77983.html

GT

Kudos [?]: 855 [0], given: 19

Manager
Joined: 19 Oct 2008
Posts: 91

Kudos [?]: 52 [0], given: 0

Re: Five pieces of wood GMAT Prep PS [#permalink]

### Show Tags

19 Mar 2009, 05:50
Excellent explanations. OA is 100.

Kudos [?]: 52 [0], given: 0

Manager
Joined: 05 Jan 2009
Posts: 79

Kudos [?]: 165 [0], given: 2

### Show Tags

07 Apr 2009, 10:40
Five pieces of wood have an average (arithmetic mean) length of 124 centimeters and a median length of 140 centimeters. What is the maximum possible length, in centimeters, of the shortest piece of wood?
90
100
110
130
140

Kudos [?]: 165 [0], given: 2

Director
Joined: 29 Aug 2005
Posts: 855

Kudos [?]: 502 [0], given: 7

Re: GMATprep practice question:wood mean [#permalink]

### Show Tags

07 Apr 2009, 12:01
pmal04 wrote:
Five pieces of wood have an average (arithmetic mean) length of 124 centimeters and a median length of 140 centimeters. What is the maximum possible length, in centimeters, of the shortest piece of wood?
90
100
110
130
140

Sum of lengths = 124*5=620

Number line: _ _ 140 _ _

To maximize the first from the left, you need to minimize the numbers on the right of 140. Also you need to minimize the second from the left.
Ultimately, this will look like: 100 100 140 140 140

Kudos [?]: 502 [0], given: 7

Manager
Affiliations: CFA L3 Candidate, Grad w/ Highest Honors
Joined: 03 Nov 2007
Posts: 131

Kudos [?]: 139 [0], given: 9

Location: USA
Schools: Chicago Booth R2 (WL), Wharton R2 w/ int, Kellogg R2 w/ int
WE 1: Global Operations (Futures & Portfolio Financing) - Hedge Fund ($10bn+ Multi-Strat) WE 2: Investment Analyst (Credit strategies) - Fund of Hedge Fund ($10bn+ Multi-Strat)
Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

04 Aug 2009, 20:43
5 peices of wood have an average length of 124 inches and a median of 140 inches. What is the MAX possible length of the shortest piece of wood?

90
100
110
130
140

How would one write this algebraically?

Kudos [?]: 139 [0], given: 9

Intern
Joined: 01 Aug 2009
Posts: 29

Kudos [?]: 18 [4], given: 3

Location: Australia
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

04 Aug 2009, 23:38
4
KUDOS
The median of 5 pieces is 140. Therefore, there are 2 pieces >=140.
Since, we want to maximize the smallest piece, we want to limit the largest piece(s) to the lowest value possible, because the larger the largest pieces the smaller the smallest pieces will have to be. But since the median is 140, it is the floor limit on the size of the 2 largest pieces...so the two largest pieces will have to be 140.

(A+B+140+140+140)/2 = 124 [where, A and B are the smaller pieces]

Since the question is asking for the maximum size of the smallest piece while preserving the average and median, A and B must be equal, so,
(2A+140+140+140)/2 = 124

A = 100.

Another way to think about it is, how averages are distributed among numbers. For every inch more the average, their has to be an inch less than the average. So, we have 3 numbers which are 16 each more than the average...in total 48 over the average. The two smaller pieces will have to be compensate this. And to get the maximum lowest value the compensation should be distributed evenly...each member should be 24 less than the average...124-24 = 100.
_________________

The three most significant times in your life are:
1. When you fall in love
2. The birth of your first child
3. When you prepare for your GMAT

Kudos [?]: 18 [4], given: 3

Manager
Joined: 29 Jul 2009
Posts: 116

Kudos [?]: 109 [0], given: 23

Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

05 Aug 2009, 02:37
scarish wrote:
The median of 5 pieces is 140. Therefore, there are 2 pieces >=140.
Since, we want to maximize the smallest piece, we want to limit the largest piece(s) to the lowest value possible, because the larger the largest pieces the smaller the smallest pieces will have to be. But since the median is 140, it is the floor limit on the size of the 2 largest pieces...so the two largest pieces will have to be 140.

(A+B+140+140+140)/2 = 124 [where, A and B are the smaller pieces]
Since the question is asking for the maximum size of the smallest piece while preserving the average and median, A and B must be equal, so,
(2A+140+140+140)/2 = 124

A = 100.

Another way to think about it is, how averages are distributed among numbers. For every inch more the average, their has to be an inch less than the average. So, we have 3 numbers which are 16 each more than the average...in total 48 over the average. The two smaller pieces will have to be compensate this. And to get the maximum lowest value the compensation should be distributed evenly...each member should be 24 less than the average...124-24 = 100.

Great Explanation....kudos to you!! and a cool signature as well...IMO 100

Kudos [?]: 109 [0], given: 23

Retired Moderator
Joined: 05 Jul 2006
Posts: 1749

Kudos [?]: 442 [0], given: 49

Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

05 Aug 2009, 05:18
[quote="robertrdzak"]5 peices of wood have an average length of 124 inches and a median of 140 inches. What is the MAX possible length of the shortest piece of wood?

90
100
110
130
140

124*5 = 620 the median is the middle peice's lenght thus 2 peices are equall or bigger in length and 2 less

think of it as 2 hands of a scale and the axis is the median, one have to minimize the largest 2 values for eg: 140,140

thus the shortest 2 total lenght = 620-(140*3) = 200 , from the given the there must be a ( shortest piece) ie: the shortest 2 peices are not equal in length, from the values given , i d choose 90.

Kudos [?]: 442 [0], given: 49

Intern
Joined: 01 Aug 2009
Posts: 29

Kudos [?]: 18 [0], given: 3

Location: Australia
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

05 Aug 2009, 05:47
apoorvasrivastva wrote:
Great Explanation....kudos to you!! and a cool signature as well...IMO 100

Thanks mate..

yezz wrote:
thus the shortest 2 total lenght = 620-(140*3) = 200 , from the given the there must be a ( shortest piece) ie: the shortest 2 peices are not equal in length, from the values given , i d choose 90.

Hmmm...I don't know about this. I mean we could then have 99 and 101 as the two smallest pieces. The question specifically asked for the greatest possible. Just choosing 90 because that's the lowest value available other than 100 doesn't sound right. Anyone else wanna have a crack at this.
_________________

The three most significant times in your life are:
1. When you fall in love
2. The birth of your first child
3. When you prepare for your GMAT

Kudos [?]: 18 [0], given: 3

Senior Manager
Joined: 17 Jul 2009
Posts: 285

Kudos [?]: 44 [0], given: 9

Concentration: Nonprofit, Strategy
GPA: 3.42
WE: Engineering (Computer Hardware)
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

05 Aug 2009, 13:11
my answer is still 100, since median is 140...for the shortest wood to be max is for the longest 3 to be shortest and have the remaining extra length subtracted between the last two short wood, so we have:

(124*5 - 140*3)/2 = 100

Kudos [?]: 44 [0], given: 9

Manager
Affiliations: CFA L3 Candidate, Grad w/ Highest Honors
Joined: 03 Nov 2007
Posts: 131

Kudos [?]: 139 [0], given: 9

Location: USA
Schools: Chicago Booth R2 (WL), Wharton R2 w/ int, Kellogg R2 w/ int
WE 1: Global Operations (Futures & Portfolio Financing) - Hedge Fund ($10bn+ Multi-Strat) WE 2: Investment Analyst (Credit strategies) - Fund of Hedge Fund ($10bn+ Multi-Strat)
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

06 Aug 2009, 16:56
scarish wrote:
The median of 5 pieces is 140. Therefore, there are 2 pieces >=140.
Since, we want to maximize the smallest piece, we want to limit the largest piece(s) to the lowest value possible, because the larger the largest pieces the smaller the smallest pieces will have to be. But since the median is 140, it is the floor limit on the size of the 2 largest pieces...so the two largest pieces will have to be 140.

(A+B+140+140+140)/2 = 124 [where, A and B are the smaller pieces]

Since the question is asking for the maximum size of the smallest piece while preserving the average and median, A and B must be equal, so,
(2A+140+140+140)/2 = 124

A = 100.

Another way to think about it is, how averages are distributed among numbers. For every inch more the average, their has to be an inch less than the average. So, we have 3 numbers which are 16 each more than the average...in total 48 over the average. The two smaller pieces will have to be compensate this. And to get the maximum lowest value the compensation should be distributed evenly...each member should be 24 less than the average...124-24 = 100.

Great process, thanks for the help!!!

Kudos [?]: 139 [0], given: 9

Director
Joined: 25 Oct 2008
Posts: 594

Kudos [?]: 1181 [0], given: 100

Location: Kolkata,India
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

26 Sep 2009, 18:41
Phew..NOT clear at all..
I struggled and made it through robertrdzak explanation but not clear in the last part of each pc being 100 and 100..why cant it be 90 and 110??

I solved it this way:
Mean of the length of five pieces = 124 So total length = 124*5 = 620.

Median = 140, so the length of rest of the 4 pieces = 620 - 140 = 480

Assume the 5 pieces in ascending order be X1 X2 140 X3 X4 where X1 is the shortest.

For X1 to be maximum, X3 and X4 has to be minimum but we have to keep in mind the median has to be 140...HERE i had to stop cos i really dnt know how to proceed furthurserious GAPS in fundamentals.. HELP
_________________

http://gmatclub.com/forum/countdown-beginshas-ended-85483-40.html#p649902

Kudos [?]: 1181 [0], given: 100

Manager
Joined: 15 Sep 2009
Posts: 131

Kudos [?]: 27 [0], given: 2

Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

27 Sep 2009, 02:03
I wud go with option 100.

Adding all the pieces we must get 480.So putting the larger 2 pieces as 140.We get addition of 2 smaller pieces as 200.
This leaves us with the length of each piece as 100.

Kudos [?]: 27 [0], given: 2

Manager
Joined: 25 Mar 2009
Posts: 54

Kudos [?]: 19 [0], given: 9

Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

28 Sep 2009, 10:58
robertrdzak wrote:
5 peices of wood have an average length of 124 inches and a median of 140 inches. What is the MAX possible length of the shortest piece of wood?

90
100
110
130
140

How would one write this algebraically?

x1<=x2<=x3=med<=x4<=x5
x1+x2+x3+x4+x5=620
Med=140 => x1+x2+x4+x5=480
we know that x4+x5>med+med=280 => x1+x2<480-280=200 => 2x1<=200 (coz x1<=x2)
=>x1<=100

So max x1=100

Last edited by Mikko on 29 Sep 2009, 00:23, edited 2 times in total.

Kudos [?]: 19 [0], given: 9

Manager
Joined: 04 Sep 2009
Posts: 53

Kudos [?]: 30 [0], given: 7

WE 1: Real estate investment consulting
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

28 Sep 2009, 15:19
tejal777 wrote:
ANYBODY?

Scarish provided a very good explanation above.

My approach was the same - maybe this one will be helpful to you:

Total sum = 124 x 5 = 620
Median is number 3 in the total order, meaning that number 4 and 5 cannot be smaller.

Now, the key here is to understand the question: it specifically asks for a maximum size of the smallest piece. They do not say that the size of piecese 4 & 5 is more than 140, nor do they say that the smaller pieces are not of equal size. If you understand this, you can make two assumptions:

1) Apply the value of the median to the pieces 4 & 5
2) Apply the same value to pieces 1 & 2

This way you maximize the size of 1 without breaking out of the terms of the question stem.

So here we go:

1) 3 + 4 + 5 = 140 x 3 = 420 => 1+2 = 620 - 420 = 200
2) Since 1+2=200 => 1 may equal maximum of 100.

Again, the key here is to really understand what is being asked. That way you can make the necessary assumptions.

Kudos [?]: 30 [0], given: 7

Senior Manager
Joined: 31 Aug 2009
Posts: 415

Kudos [?]: 357 [1], given: 20

Location: Sydney, Australia
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

28 Sep 2009, 19:05
1
KUDOS
tejal777 wrote:
Phew..NOT clear at all..
I struggled and made it through robertrdzak explanation but not clear in the last part of each pc being 100 and 100..why cant it be 90 and 110??

The smallest two pieces COULD be 90, 110. They could also be 80, 120. However, the question stem asks for what the MAX length could be for the smallest piece of wood. In both these situations the smallest piece is 90 and 80 i.e not maximised.

So {100, 100, 140, 140, 140} and {90,100,140,140,140} and many other sets satisfy the conditions for mean and median.
But in order to maximise the smallest piece 100 would be the only option. Hope that makes sense.

Kudos [?]: 357 [1], given: 20

Director
Joined: 25 Oct 2008
Posts: 594

Kudos [?]: 1181 [0], given: 100

Location: Kolkata,India
Re: Mean, Median and 5 pieces of wood [#permalink]

### Show Tags

20 Oct 2009, 21:15
yangsta8:Thank you mate!!Got it!!
_________________

http://gmatclub.com/forum/countdown-beginshas-ended-85483-40.html#p649902

Kudos [?]: 1181 [0], given: 100

Intern
Joined: 26 Nov 2009
Posts: 17

Kudos [?]: 112 [0], given: 0

### Show Tags

13 Dec 2009, 17:53
Five pieces of wood have an average (arithmetic mean) of length of 124 cm and a median length of 140 cm. what is the max possible length, in com, of the shortest piece of wood?

a) 90
b) 100
c) 110
d) 130
e) 140

I chose (A).

Sum of 5 pieces of wood = 5(124) = 620.

a + b + 140 + d+ e = 620.

Therefore, I chose these numbers and got....

90 + 110 + 140 + 140 + 140 = 620, so hence (A) 90 was my answer. I'm not sure if this is correct. Can anyone tell me if it is or not?

Kudos [?]: 112 [0], given: 0

Manager
Status: Getting ready for the internship summer
Joined: 07 Jun 2009
Posts: 50

Kudos [?]: 31 [0], given: 23

Location: Rochester, NY
Schools: Simon
WE 1: JPM - Treasury
Re: GMAT Prep Statistics Problem [#permalink]

### Show Tags

13 Dec 2009, 18:02
I have (B).

Considerations:

b < 140
a $$\leq$$ b

a + b + 140 + 140 + 140 = 620
a + b = 200

Therefore the largest value for a is 100.

Kudos [?]: 31 [0], given: 23

VP
Joined: 05 Mar 2008
Posts: 1467

Kudos [?]: 305 [0], given: 31

Re: GMAT Prep Statistics Problem [#permalink]

### Show Tags

13 Dec 2009, 18:06
JimmyWorld wrote:
Five pieces of wood have an average (arithmetic mean) of length of 124 cm and a median length of 140 cm. what is the max possible length, in com, of the shortest piece of wood?

a) 90
b) 100
c) 110
d) 130
e) 140

I chose (A).

Sum of 5 pieces of wood = 5(124) = 620.

a + b + 140 + d+ e = 620.

Therefore, I chose these numbers and got....

90 + 110 + 140 + 140 + 140 = 620, so hence (A) 90 was my answer. I'm not sure if this is correct. Can anyone tell me if it is or not?

I'm getting B

100 + 100 + 140 + 140 + 140

Kudos [?]: 305 [0], given: 31

Re: GMAT Prep Statistics Problem   [#permalink] 13 Dec 2009, 18:06

Go to page   Previous    1   2   3   4   5    Next  [ 87 posts ]

Display posts from previous: Sort by