GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 14 Nov 2019, 19:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

For any positive integer n, the sum of the first n positive integers

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Veritas Prep GMAT Instructor
User avatar
Joined: 11 Dec 2012
Posts: 312
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 25 Feb 2013, 08:42
2
1
Hi neerajeai, please note that the n(n+1)/2 shortcut formula is only applicable if the starting point is 1. Anytime you want to find the number of terms between two given numbers you should use the general formula ((first - last) / frequency) + 1. You can also multiply by the average at the end to get the sum.

In your case it is (((301-99)/2) + 1) * 200 = 102 * 200 = 20400. Answer choice C with a presumed typo in the unit digit?

Hope this helps!
-Ron
_________________
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2812
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 27 Apr 2016, 08:42
3
gwiz87 wrote:
For any positive integer n, the sum of the first n positive integers equals n(n+1)/2. What is the sum of all the even integers between 99 and 301?

A. 10,100
B. 20,200
C. 22,650
D. 40,200
E. 45,150

Hi,

Hoping you can explain this one to me.


Although a formula is provided in this problem, we can easily solve it using a different formula:

sum = (average)(quantity)

Let’s first determine the average.

In any set of numbers in an arithmetic sequence, we can determine the average using the formula:

(1st number in set + last number in set)/2

Remember, we must average the first even integer in the set and the last even integer in the set. So we have:

(100 + 300)/2 = 400/2 = 200

Next we have to determine the quantity. Once again, we include the first even integer in the set and the last even integer in the set. Thus, we are actually determining the quantity of even consecutive even integers from 100 to 300, inclusive.

Two key points to recognize:

1) Because we are determining the number of “even integers” in the set, we must divide by 2 after subtracting our quantities.

2) Because we are counting the consecutive even integers from 100 to 300, inclusive, we must “add 1” after doing the subtraction.

quantity = (300 – 100)/2 + 1

quantity = 200/2 + 1

quantity = 101

Finally, we can determine the sum.

sum = 200 x 101

sum = 20,200

Note that the reason this is easier than using the formula provided, is that the given formula would have to be applied several times since we don’t want the total of all of the first 300 numbers. We’d have to remember to subtract the sum of the first 99 and divide by two to count only the even numbers. But we’d also have to account for the fact that the first and the last number in the set are both even. So even though a formula is given, it isn’t very easy to use.

Answer is B.
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

IIMA, IIMC School Moderator
User avatar
V
Joined: 04 Sep 2016
Posts: 1371
Location: India
WE: Engineering (Other)
CAT Tests
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 31 Dec 2017, 17:29
niks18

I was confused if the second formula was applied only when my sequence is starting from 1.
_________________
It's the journey that brings us happiness not the destination.

Feeling stressed, you are not alone!!
Retired Moderator
avatar
D
Joined: 25 Feb 2013
Posts: 1167
Location: India
GPA: 3.82
GMAT ToolKit User Reviews Badge
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 31 Dec 2017, 21:19
adkikani wrote:
niks18

I was confused if the second formula was applied only when my sequence is starting from 1.


Hi adkikani

The formula is a simple derivation of AP series that starts from 1 and is consecutive

So the Sum of AP series is \(S_n=\frac{n[2a+(n-1)d]}{2}=\frac{n}{2}\)[First term + Last Term]

if the sequence starts from 1 and is consecutive so your First term=1 and Last Term=number of terms in the series (because sequence is consecutive)

so \(S_n=\frac{n(1+n)}{2}\)

Let's take a simple example. if I have to find sum of numbers from 6 to 10, then I can do that by first finding sum of all Numbers from 1 to 10 and then from this sum subtract sum of numbers from 1 to 5.

In the number line this can be represented as

1...2...3...4...5...6...7...8...9...10. Here First term =1 and last term=10=number of terms in the sequence

As you can clearly see to find sum of numbers from 6 to 10, we simply need to remove sum of numbers from 1 to 5 out of the total sum i.e from 1 to 10.

Now in this question we need to find sum of number from 50 to 150 so it will be Total sum of numbers from 1 to 150 less sum of numbers from 1 to 49
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 12 Sep 2015
Posts: 4063
Location: Canada
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 19 Apr 2018, 13:46
Top Contributor
gwiz87 wrote:
For any positive integer n, the sum of the first n positive integers equals n(n+1)/2. What is the sum of all the even integers between 99 and 301?

A. 10,100
B. 20,200
C. 22,650
D. 40,200
E. 45,150


Here's one approach.

We want 100+102+104+....298+300
This equals 2(50+51+52+...+149+150)
From here, a quick way is to evaluate this is to first recognize that there are 101 integers from 50 to 150 inclusive (150 - 50 + 1 = 101)

To evaluate 2(50+51+52+...+149+150), let's add values in pairs:

....50 + 51 + 52 +...+ 149 + 150
+150+ 149+ 148+...+ 51 + 50
...200+ 200+ 200+...+ 200 + 200

How many 200's do we have in the new sum? There are 101 altogether.
101 x 200 = 20,200

Answer: B


Approach #2:

From my last post, we can see that we have 101 even integers from 100 to 300 inclusive.

Since the values in the set are equally spaced, the average (mean) of the 101 numbers = (first number + last number)/2 = (100 + 300)/2 = 400/2 = 200

So, we have 101 integers, whose average value is 200.
So, the sum of all 101 integers = (101)(200)
= 20,200
= B


Approach #3:

Take 100+102+104+ ...+298+300 and factor out the 2 to get 2(50+51+52+...+149+150)
From here, we'll evaluate the sum 50+51+52+...+149+150, and then double it.

Important: notice that 50+51+.....149+150 = (sum of 1 to 150) - (sum of 1 to 49)

Now we use the given formula:
sum of 1 to 150 = 150(151)/2 = 11,325
sum of 1 to 49 = 49(50)/2 = 1,225

So, sum of 50 to 150 = 11,325 - 1,225 = 10,100

So, 2(50+51+52+...+149+150) = 2(10,100) = 20,200

Answer: B

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Image
Intern
Intern
User avatar
B
Joined: 15 Sep 2018
Posts: 31
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 15 Nov 2018, 23:46
We are given the formula:

\(∑_1^n \frac{n(n+1)}{2}\)


We're asked to find sum of all the even numbers between \(99\) and \(301\)....

\(100+102+104+...+296+298+300\)


We can factor out \(2\) from this sum:

\(2 \times (50+51+52+...+148+149+150)\)


In the brackets we have sum of numbers from \(50\) to \(150\). We can use the given formula for the sum of \(1\) to \(150\) and subtract the sum of \(1\) to \(49\) to find the total of this sum.

\(2 \times (\frac{150 \times 151}{2}-\frac{49 \times 50}{2})\)

\(=(150)(151) – (49)(50)\)

\(=22,650 – 2,450\)

\(=20,200\)


The final answer is .
Manager
Manager
avatar
S
Joined: 23 Apr 2018
Posts: 142
Reviews Badge CAT Tests
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 09 Apr 2019, 14:56
CharmWithSubstance wrote:
For any positive integer n, the sum of the first n positive integers equals n(n+1)/2. What is the sum of all the even integers between 99 and 301?

A. 10,100
B. 20,200
C. 22,650
D. 40,200
E. 45,150



So I know, that we must use the first and last digits of even numbers, if we are calculating for a sum of evens..

But I tried it this way, and still got the answer..
Would like to know, if it's an acceptable method, or its wrong, and I shouldn't use it ?

if we use first and last terms as given, i.e. First term= 99 and last term = 301
Subtract these two numbers, to get the total number of terms..
301-99 = 202
Note this includes odd and evens both

for even, we must divide it by 2.
therefore, we get a 202/2 = 101 terms...

AS you can see, nothing is added or subtracted for inclusive, exclusive..

now, 101 * avg of terms, will give us the sum.

avg = 301+99/2 = 400/2 = 200

101*200 = 20,200
option B

Please correct me, if you think this is a wrong approach and we should not use it
Intern
Intern
User avatar
B
Status: Studying for GMAT
Joined: 06 Jan 2015
Posts: 19
Location: United Kingdom
For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 02 Jul 2019, 07:44
This is another way to tackle this question:

It is given that the sum of the first n positive integers is n(n+1)/2. I didn't really use this formula.

I remembered this formula instead (and I think you should remember it too!):

The sum of the elements in any evenly spaced set is: (mean)*(# of terms)

Steps:
1. First, find the mean
The questions asked to find the sum of all the EVEN integers between 99 and 301. So that means we need to look at EVEN numbers only. So really the range we are looking at is between 100 and 300. So the mean of these evenly spaced numbers between 100 and 300 is 200. --> this is the mean (no calculation necessary here because it's an evenly spaced range so its very straight forward to find the mean; just get the middle number!)

2. Second, find the # of EVEN terms.
We stated in step 1 that the EVEN number range is between 100 and 300. So here we can utilise this formula:
[(last term -first term)/2] +1

which comes to:
[(300-100)]/2 + 1
= (200/2) +1
= 100+1
= 101 --> this is the # of EVEN terms in the range 100 and 300

Coming back to this: The sum of the elements in any evenly spaced set is: (mean)*(# of terms)

(mean)*(# of terms)
=200* 101
=20200

Answer B
Intern
Intern
avatar
B
Joined: 06 Jul 2019
Posts: 9
Re: For any positive integer n, the sum of the first n positive integers  [#permalink]

Show Tags

New post 19 Jul 2019, 21:56
In my case I remember the formula of arithmetic progression: Sum of n terms = n/2*(a1+an)
In this case:

Interval: 100-102-104-106........-296-298-300

The difference (distance) between each number is 2:
- If I do (102-100)/2=1
- If I do (104-100)/2=2
- If I do (106-100)/2=3
As we can see, if we do this, every term is in the (n-1) position... so (300-100)/2=100 will be in the n-1 position, then... the number 300 is in the position (100+1=101) of the serie.

Now we apply the formula: Sum of n = n/2*(a1+an)
Sum of n = 101/2*(100+300)=20.200

I Hope this solution could help someone

Thanks!
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13589
Re: Q28: For any positive integer n, the sum of the first n  [#permalink]

Show Tags

New post 20 Sep 2019, 05:40
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: Q28: For any positive integer n, the sum of the first n   [#permalink] 20 Sep 2019, 05:40

Go to page   Previous    1   2   [ 30 posts ] 

Display posts from previous: Sort by

For any positive integer n, the sum of the first n positive integers

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne