Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: For positive integer x, y, and z, is y > z? [#permalink]

Show Tags

17 Mar 2011, 18:36

statement 1: x=4+y, z is unknown, insufficient statement 2: x=6+z, y is unknown, insufficient both statement 1+2: 4+y=6+z so y=2+z because all x, y, z are positive integer so y is always 2 bigger than z C

x=4k+y x=6m+z 4k+y=6m+z, hence E the answer i wonder why some of you skipped the quotients in front of 4 and 6.Is it possible to solve so?

You are right the answer is E, and yes you should put a quotient in front of divisor.

For positive integer x, y, and z, is y > z?

(1) When x is divided by 4, the remainder is y --> \(x=4q+y\) and \(0<y<4\). Not sufficient. (2) When x is divided by 6, the remainder is z --> \(x=6p+z\) and \(0<z<6\). Not sufficient.

(1)+(2) Still insufficient. Consider: \(x=13\), \(y=1\) and \(z=1\) for a NO answer; \(x=7\), \(y=3\) and \(z=1\) for an YES answer.

Re: For positive integer x, y, and z, is y > z? [#permalink]

Show Tags

11 Aug 2013, 04:44

Clearly (E) it is

Explanation:

Is y>z

(1).

x=4A + y No info about z hence Insufficient

(2).

x=6B + z No info about y hence Insufficient

Combining we get:

4A + y = 6B + z

=> (y-z) = 6B - 4A ( now from here y can be less than z or more than z)
_________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Re: For positive integer x, y, and z, is y > z? [#permalink]

Show Tags

25 Feb 2016, 06:29

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Campus visits play a crucial role in the MBA application process. It’s one thing to be passionate about one school but another to actually visit the campus, talk...

Its been long time coming. I have always been passionate about poetry. It’s my way of expressing my feelings and emotions. And i feel a person can convey...

Marty Cagan is founding partner of the Silicon Valley Product Group, a consulting firm that helps companies with their product strategy. Prior to that he held product roles at...

Written by Scottish historian Niall Ferguson , the book is subtitled “A Financial History of the World”. There is also a long documentary of the same name that the...