GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Oct 2019, 05:24

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

For some integer q, q^2 - 5 is divisible by all of the follo

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9706
Location: Pune, India
Re: q^2 - 5  [#permalink]

Show Tags

New post Updated on: 08 Jan 2011, 21:17
4
3
dimitri92 wrote:
For some integer q, q^2 - 5 is divisible by all of the following EXCEPT
(A) 29
(B) 30
(C) 31
(D) 38
(E) 41


The way I would approach this question:

So q^2 - 5 is divisible by all of the following except:
29, 31, 41 - big prime numbers, don't know any divisibility rules for these, forget them for the time being.. 38 = 19*2. (q^2 - 5) can be divisible by 2 (e.g. when q^2 ends with a 5, q^2 - 5 ends with a 0). As for 19, again a big prime number. Leave it for the time being.

(If the question is anywhere close to an actual GMAT question, they will not expect you to do many calculations with 29, 31, 41 etc. I see these big prime numbers and am quite convinced that they are just a smokescreen.Try and focus on what they could ask you like divisibility by 2, 3 etc. )

As for 30, q^2 - 5 is divisible by 10 (using the logic shown above). What about 3?
\(q^2 - 5 = q^2 - 1 - 4 = (q - 1)(q + 1) - 4\)
In any 3 consecutive numbers, (e.g. \((q - 1), q, (q + 1)\)), one and only one number will be divisible by 3.
If either (q - 1) or (q + 1) is divisible by 3, (q - 1)(q + 1) is divisible by 3, which means \((q - 1)(q + 1) - 4\) cannot be divisible by 3. If q is divisible by 3, then q^2 will be divisible by 3 and q^2 - 5[/m] will not be divisible by 3.
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Originally posted by VeritasKarishma on 08 Jan 2011, 21:10.
Last edited by VeritasKarishma on 08 Jan 2011, 21:17, edited 1 time in total.
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9706
Location: Pune, India
Re: q^2 - 5  [#permalink]

Show Tags

New post 08 Jan 2011, 21:14
dimitri92: Didn't see your response since it was on page 2. But yes, that is exactly how I would think about it too. (Thought I think there is a small typo. You have a '+4' rather than a '-4')
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Director
Director
User avatar
B
Joined: 04 Jun 2016
Posts: 556
GMAT 1: 750 Q49 V43
Re: For some integer q, q^2 - 5 is divisible by all of the follo  [#permalink]

Show Tags

New post 26 Jul 2016, 05:10
dimitri92 wrote:
\(q^2-5=( q^2-1) +4\)
= ( q+1) (q-1) +4



ummmm.. shouldn't \(q^2-5=( q^2-1)\)-4 ?????
_________________
Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly.
FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.
Veritas Prep GMAT Instructor
User avatar
V
Joined: 16 Oct 2010
Posts: 9706
Location: Pune, India
Re: For some integer q, q^2 - 5 is divisible by all of the follo  [#permalink]

Show Tags

New post 26 Jul 2016, 23:32
LogicGuru1 wrote:
dimitri92 wrote:
\(q^2-5=( q^2-1) +4\)
= ( q+1) (q-1) +4



ummmm.. shouldn't \(q^2-5=( q^2-1)\)-4 ?????


Yes, it should be.
Check: for-some-integer-q-q-2-5-is-divisible-by-all-of-the-follo-94414-20.html#p848986
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Current Student
avatar
B
Joined: 04 Aug 2015
Posts: 76
Location: India
Concentration: Leadership, Technology
GMAT 1: 700 Q50 V35
GPA: 3.39
Re: For some integer q, q^2 - 5 is divisible by all of the follo  [#permalink]

Show Tags

New post 04 Sep 2017, 17:18
Bunuel wrote:
dimitri92 wrote:
For some integer q, q^2 - 5 is divisible by all of the following EXCEPT
(A) 29
(B) 30
(C) 31
(D) 38
(E) 41


Hint: q^2-5 (q is an integer) is never multiple of 3 (try to prove this), hence 30 is out.

Answer: B.


Taking lead from Bunuel's post...

A) 29 - Prime
B) 30 - 2 * 3 * 5
C) 31 - Prime
D) 38 - 2 * 19
E) 41 - Prime

Let's start with simple numbers.

1) 2

Remainder when 5/2 is 1. And, perfect squares such as 81 produce remainder 1 when divided by 2. Thus, the overall remainder (1-1) is 0. 2 might divide. Park aside.

2) 3

Remainder when 5/3 is 2. The perfect squares when divided by 3, produce either 0 or 1 remainder.
Case 1) When the remainder is 0
The remainder value of the expression is 0-2 = -2. Not divisible by 3

Case 2) When the remainder is 1
The remainder value of the expression is 1-2 = -1. Not divisible by 3

Thus, the expression will not be divisible by 3 or any multiple of it. Thus, option B.
Manager
Manager
avatar
B
Joined: 04 May 2014
Posts: 151
Location: India
WE: Sales (Mutual Funds and Brokerage)
Re: For some integer q, q^2 - 5 is divisible by all of the follo  [#permalink]

Show Tags

New post 10 Sep 2017, 20:43
Since could not think of any other way used brute force to solve the question. it can be done in 2 mins.

The Min no is 29 hence we can start squaring from 6 onwards.
6²=36-5=31-C is out.
7²=49-5=44
8²=64-5=59
9²=81-5=76-D is out(38*2=76)
10²=100-5=95
11²=121-5=116-A is out (units digit is 6 try 29*4=116)
12²=144-5=139
13²=169-5=164-E is out(41*4=164)
Answer is B-30
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2815
Re: For some integer q, q^2 - 5 is divisible by all of the follo  [#permalink]

Show Tags

New post 14 Sep 2017, 10:42
dimitri92 wrote:
For some integer q, q^2 - 5 is divisible by all of the following EXCEPT

(A) 29
(B) 30
(C) 31
(D) 38
(E) 41


We need to find the answer choice that does not divide 5 less than a perfect square. Let’s analyze each answer choice:

A) 29

Since 11^2 - 5 = 116, which is divisible by 29, answer A is not correct.

B) 30

It doesn’t seem that we can find an integer q such that q^2 - 5 is divisible by 30. However, let’s make sure we can find an integer q such that q^2 - 5 is divisible by 31, 38, and 41.

C) 31

Since 6^2 - 5 = 31, which is divisible by 31, answer C is not correct.

D) 38

Since 9^2 - 5 = 76, which is divisible by 38, answer D is not correct.

E) 41

Since 13^2 - 5 = 164, which is divisible by 41, answer E is not correct.

Answer: B
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13271
Re: For some integer q, q^2 - 5 is divisible by all of the follo  [#permalink]

Show Tags

New post 23 Oct 2018, 00:41
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: For some integer q, q^2 - 5 is divisible by all of the follo   [#permalink] 23 Oct 2018, 00:41

Go to page   Previous    1   2   [ 28 posts ] 

Display posts from previous: Sort by

For some integer q, q^2 - 5 is divisible by all of the follo

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne