Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack
GMAT Club

 It is currently 30 Mar 2017, 17:33

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Four cards are randomly drawn from a pack of 52 cards. Find

Author Message
TAGS:

### Hide Tags

Director
Joined: 23 Apr 2010
Posts: 584
Followers: 2

Kudos [?]: 83 [1] , given: 7

Four cards are randomly drawn from a pack of 52 cards. Find [#permalink]

### Show Tags

02 Jun 2010, 00:36
1
KUDOS
2
This post was
BOOKMARKED
00:00

Difficulty:

(N/A)

Question Stats:

100% (01:31) correct 0% (00:00) wrong based on 6 sessions

### HideShow timer Statistics

Four cards are randomly drawn from a pack of 52 cards. Find the probability that all four cards are of different denominations?

My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

Official solution:

[Reveal] Spoiler:
OMEGA: (52 4)
A: (4 1) x (13 4)
P (A) = 0.01

I think the official solution is wrong.
Director
Joined: 23 Apr 2010
Posts: 584
Followers: 2

Kudos [?]: 83 [0], given: 7

### Show Tags

02 Jun 2010, 01:35
nonameee wrote:
My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. The official solution is IMO still incorrect since A should be equal to: (4^4) x (13 4).

Your opinion would be greatly appreciated.
Math Expert
Joined: 02 Sep 2009
Posts: 37701
Followers: 7421

Kudos [?]: 100060 [1] , given: 11136

### Show Tags

02 Jun 2010, 08:44
1
KUDOS
Expert's post
1
This post was
BOOKMARKED
nonameee wrote:
Four cards are randomly drawn from a pack of 52 cards. Find the probability that all four cards are of different denominations?

My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

Official solution:

[Reveal] Spoiler:
OMEGA: (52 4)
A: (4 1) x (13 4)
P (A) = 0.01

I think the official solution is wrong.

nonameee wrote:
nonameee wrote:
My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. The official solution is IMO still incorrect since A should be equal to: (4^4) x (13 4).

Your opinion would be greatly appreciated.

I think you are right:

$$\frac{4^4*C^4_{13}}{C^4_{52}}$$ would be the probability of getting 4 cards of different denominations out of 52.

# of ways of to choose 4 different denominations out of 13 -$$C^4_{13}$$;
Multiplying by $$4^4$$ as each card from the above string can be of four suits ($$4*4*4*4=4^4$$);
Total # of ways to choose 4 cards out of 52 - $$C^4_{52}$$.

Or another way:

We can choose any card for the first one - $$\frac{52}{52}$$;
Next card can be any card but 3 of the denomination we'v already chosen - $$\frac{48}{51}$$ (if we've picked 10, then there are 3 10-s left and we can choose any but these 3 cards out of 51 cards left);
Next card can be any card but 3*2=6 of the denominations we'v already chosen - $$\frac{44}{50}$$ (if we've picked 10 and King, then there are 3 10-s and 3 Kings left and we can choose any but these 3*2=6 cards out of 50 cards left);
Last card can be any card but 3*3=9 of the denominations we'v already chosen - $$\frac{40}{49}$$;

$$P=\frac{52}{52}*\frac{48}{51}*\frac{44}{50}*\frac{40}{49}=\frac{4^4*13*12*11*10}{52*51*50*49}$$ - the same answer as above.

Hope it helps.

 ! Please post PS questions in the PS subforum: gmat-problem-solving-ps-140/Please post DS questions in the DS subforum: gmat-data-sufficiency-ds-141/No posting of PS/DS questions is allowed in the main Math forum.

_________________
Director
Joined: 23 Apr 2010
Posts: 584
Followers: 2

Kudos [?]: 83 [0], given: 7

### Show Tags

03 Jun 2010, 00:41

 I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. T

Wanted just to correct myself. The above argument is wrong since: 52 x 48 x 44 x 40 is a case of variations without repetition. Therefore, the set won't contain cards of the same denomination.
Manager
Joined: 03 Feb 2010
Posts: 181
Concentration: Strategy
Schools: Northwestern (Kellogg) - Class of 2014
WE: Marketing (Computer Hardware)
Followers: 5

Kudos [?]: 29 [0], given: 34

### Show Tags

04 Jun 2010, 12:18
nonameee wrote:

 I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. T

Wanted just to correct myself. The above argument is wrong since: 52 x 48 x 44 x 40 is a case of variations without repetition. Therefore, the set won't contain cards of the same denomination.

Why wouldn't the probability be 1 * 13/51 * 13/50 * 13/49 ? We know there are 4 suits, and the probability of getting any card in one suit is 13/# of cards in the deck.
Manager
Joined: 03 Feb 2010
Posts: 181
Concentration: Strategy
Schools: Northwestern (Kellogg) - Class of 2014
WE: Marketing (Computer Hardware)
Followers: 5

Kudos [?]: 29 [0], given: 34

### Show Tags

04 Jun 2010, 12:33
Bunuel wrote:
nonameee wrote:
Four cards are randomly drawn from a pack of 52 cards. Find the probability that all four cards are of different denominations?

My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

Official solution:

[Reveal] Spoiler:
OMEGA: (52 4)
A: (4 1) x (13 4)
P (A) = 0.01

I think the official solution is wrong.

nonameee wrote:
nonameee wrote:
My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. The official solution is IMO still incorrect since A should be equal to: (4^4) x (13 4).

Your opinion would be greatly appreciated.

I think you are right:

$$\frac{4^4*C^4_{13}}{C^4_{52}}$$ would be the probability of getting 4 cards of different denominations out of 52.

# of ways of to choose 4 different denominations out of 13 -$$C^4_{13}$$;
Multiplying by $$4^4$$ as each card from the above string can be of four suits ($$4*4*4*4=4^4$$);
Total # of ways to choose 4 cards out of 52 - $$C^4_{52}$$.

Or another way:

We can choose any card for the first one - $$\frac{52}{52}$$;
Next card can be any card but 3 of the denomination we'v already chosen - $$\frac{48}{51}$$ (if we've picked 10, then there are 3 10-s left and we can choose any but these 3 cards out of 51 cards left);
Next card can be any card but 3*2=6 of the denominations we'v already chosen - $$\frac{44}{50}$$ (if we've picked 10 and King, then there are 3 10-s and 3 Kings left and we can choose any but these 3*2=6 cards out of 50 cards left);
Last card can be any card but 3*3=9 of the denominations we'v already chosen - $$\frac{40}{49}$$;

$$P=\frac{52}{52}*\frac{48}{51}*\frac{44}{50}*\frac{40}{49}=\frac{4^4*13*12*11*10}{52*51*50*49}$$ - the same answer as above.

Hope it helps.

No posting of PS/DS questions is allowed in the main Math forum.[/warning]

In your solution, you found the # of ways to choose 4 different denominations out of 13, I believe that is incorrect. Each suit(denomination) has 13 cards, we're looking for the # of ways to draw 1 card of a different suit each time, up to 4 draws. Correct me if I'm wrong.
Math Expert
Joined: 02 Sep 2009
Posts: 37701
Followers: 7421

Kudos [?]: 100060 [0], given: 11136

### Show Tags

04 Jun 2010, 13:09
edoy56 wrote:
nonameee wrote:

 I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. T

Wanted just to correct myself. The above argument is wrong since: 52 x 48 x 44 x 40 is a case of variations without repetition. Therefore, the set won't contain cards of the same denomination.

Why wouldn't the probability be 1 * 13/51 * 13/50 * 13/49 ? We know there are 4 suits, and the probability of getting any card in one suit is 13/# of cards in the deck.

edoy56 wrote:
In your solution, you found the # of ways to choose 4 different denominations out of 13, I believe that is incorrect. Each suit(denomination) has 13 cards, we're looking for the # of ways to draw 1 card of a different suit each time, up to 4 draws. Correct me if I'm wrong.

Yes you are wrong.

First of all suit and denomination are not the same: there are four suits (Clubs, Diamonds, Hearts, and Spades), and 13 different denominations (Ace, two through ten, Jack, Queen, and King).

Next, even if you are counting the probability that the 4 cards you draw are of different suits, 1 * 13/51 * 13/50 * 13/49 won't be the correct answer.

Correct answer would be $$P=\frac{(C^1_{13})^4}{C^4_{52}}$$.

Or another way: $$P=4!*\frac{13}{52}*\frac{13}{51}*\frac{13}{50}*\frac{13}{49}$$ (the same probability as above), we are multiplying by 4! as the favorable scenario of Clubs, Diamonds, Hearts, and Spades (CDHS) can occur in 4! # of ways, which is basically the # of permutaions of 4 letters CDHS.

Hope it helps.

P.S. This question is beyond the scope of GMAT, so I don't recommend to spend too much time on it.
_________________
Manager
Joined: 03 Feb 2010
Posts: 181
Concentration: Strategy
Schools: Northwestern (Kellogg) - Class of 2014
WE: Marketing (Computer Hardware)
Followers: 5

Kudos [?]: 29 [0], given: 34

### Show Tags

04 Jun 2010, 13:21
Thanks for the explanation, makes perfect sense now
Intern
Joined: 29 Dec 2009
Posts: 33
Followers: 0

Kudos [?]: 3 [0], given: 2

### Show Tags

07 Jun 2010, 11:34
confused

why is it multiplied by 4^4 and not 4!?
if the first card is taken from 1 suit the second can be from the remaining 3 because 1 suit will have only one card of one denomination....?
Math Expert
Joined: 02 Sep 2009
Posts: 37701
Followers: 7421

Kudos [?]: 100060 [1] , given: 11136

### Show Tags

07 Jun 2010, 11:53
1
KUDOS
Expert's post
ssgomz wrote:
confused

why is it multiplied by 4^4 and not 4!?
if the first card is taken from 1 suit the second can be from the remaining 3 because 1 suit will have only one card of one denomination....?

We need 4 cards of different denomination, but these 4 cards don't have to be of the different suits.

Consider this: $$C^4_{13}$$ is the # of ways to choose 4 cards of different denomination. For example one particular case from $$C^4_{13}$$ would be: Jack - Queen - King - Ace.

Now, each card from this case (Jack - Queen - King - Ace) can be of 4 suits: Clubs, Diamonds, Hearts, and Spades. So taking into account the suits the case Jack - Queen - King - Ace can be formed $$4*4*4*4=4^4$$ # of times. As there are $$C^4_{13}$$ # of cases like Jack - Queen - King - Ace, so total # of ways to form 4 cards of different denomination is $$C^4_{13}*4^4$$.

Hope it's clear.
_________________
Intern
Joined: 29 Dec 2009
Posts: 33
Followers: 0

Kudos [?]: 3 [0], given: 2

### Show Tags

07 Jun 2010, 12:05
Thank you for the detailed explanation. It is clear now
Intern
Joined: 28 May 2010
Posts: 4
Followers: 0

Kudos [?]: 4 [0], given: 1

### Show Tags

09 Jun 2010, 10:24
Bunuel wrote:
nonameee wrote:
Four cards are randomly drawn from a pack of 52 cards. Find the probability that all four cards are of different denominations?

My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

Official solution:

[Reveal] Spoiler:
OMEGA: (52 4)
A: (4 1) x (13 4)
P (A) = 0.01

I think the official solution is wrong.

nonameee wrote:
nonameee wrote:
My solution:

[Reveal] Spoiler:
OMEGA = 52 x 51 x 50 x 49
A = 52 x 48 x 44 x 40

P(A) = A/OMEGA = 0.68

I sorted it out. My solution is wrong: 52 x 48 x 44 x 40 means that this set will actually contain cards of the same denomination. The official solution is IMO still incorrect since A should be equal to: (4^4) x (13 4).

Your opinion would be greatly appreciated.

I think you are right:

$$\frac{4^4*C^4_{13}}{C^4_{52}}$$ would be the probability of getting 4 cards of different denominations out of 52.

# of ways of to choose 4 different denominations out of 13 -$$C^4_{13}$$;
Multiplying by $$4^4$$ as each card from the above string can be of four suits ($$4*4*4*4=4^4$$);
Total # of ways to choose 4 cards out of 52 - $$C^4_{52}$$.

Or another way:

We can choose any card for the first one - $$\frac{52}{52}$$;
Next card can be any card but 3 of the denomination we'v already chosen - $$\frac{48}{51}$$ (if we've picked 10, then there are 3 10-s left and we can choose any but these 3 cards out of 51 cards left);
Next card can be any card but 3*2=6 of the denominations we'v already chosen - $$\frac{44}{50}$$ (if we've picked 10 and King, then there are 3 10-s and 3 Kings left and we can choose any but these 3*2=6 cards out of 50 cards left);
Last card can be any card but 3*3=9 of the denominations we'v already chosen - $$\frac{40}{49}$$;

$$P=\frac{52}{52}*\frac{48}{51}*\frac{44}{50}*\frac{40}{49}=\frac{4^4*13*12*11*10}{52*51*50*49}$$ - the same answer as above.

How did $$\frac{52}{52}*\frac{48}{51}*\frac{44}{50}*\frac{40}{49}$$ become equal to $$\frac{4^4*13*12*11*10}{52*51*50*49}$$ here?

Take 4 common from the numerator and the result would be $$4*\frac{13*12*11*10}{52*51*50*49}$$.
Math Expert
Joined: 02 Sep 2009
Posts: 37701
Followers: 7421

Kudos [?]: 100060 [0], given: 11136

### Show Tags

09 Jun 2010, 10:32
narisipalli wrote:
How did $$\frac{52}{52}*\frac{48}{51}*\frac{44}{50}*\frac{40}{49}$$ become equal to $$\frac{4^4*13*12*11*10}{52*51*50*49}$$ here?

Take 4 common from the numerator and the result would be $$4*\frac{13*12*11*10}{52*51*50*49}$$.

Hi,

$$\frac{52}{52}*\frac{48}{51}*\frac{44}{50}*\frac{40}{49}=\frac{4*13}{52}*\frac{4*12}{51}*\frac{4*11}{50}*\frac{4*10}{49}=\frac{4^4*13*12*11*10}{52*51*50*49}$$.

Hope it's clear.
_________________
Manager
Joined: 07 Jun 2010
Posts: 50
Location: United States
Followers: 1

Kudos [?]: 39 [0], given: 7

### Show Tags

12 Jun 2010, 22:56
I think we we should not multiply it with 4 since we are not finding number of ways just probability so order doesnot matter..

13/52 * 13/51*13/49*13/48 should be the answer ...

Please correct me if i am wrong.
Math Expert
Joined: 02 Sep 2009
Posts: 37701
Followers: 7421

Kudos [?]: 100060 [0], given: 11136

### Show Tags

13 Jun 2010, 03:18
virupaksh2010 wrote:
I think we we should not multiply it with 4 since we are not finding number of ways just probability so order doesnot matter..

13/52 * 13/51*13/49*13/48 should be the answer ...

Please correct me if i am wrong.

First of all $$Probability \ of \ an \ event =\frac {# \ of \ favorable \ outcomes}{total \ # \ of \ outcomes}$$, so we do need to find the # of ways and if order matters for # of ways of an event, then order matters for probability too.

Answer for the original question is $$C^4_{52}=\frac{4^4*13*12*11*10}{52*51*50*49}$$ ( so we are not multiplying 13/52 * 13/51*13/49*13/48 by 4 we are multiplying by 4^4), please see the solution in my first post.

If you are referring to the different question we've considered (the probability that the 4 cards you draw are of different suits), the answer for it is still not 4*13/52 * 13/51*13/49*13/48 it's $$P=\frac{(C^1_{13})^4}{C^4_{52}}=4!*\frac{13}{52}*\frac{13}{51}*\frac{13}{50}*\frac{13}{49}$$, so again we are not multiplying by 4 we are multiplying by $$4!=1*2*3*4=24$$, please see the solution for this question in my second post.

For more on this issue please check Probability and Combinatorics chapters of Math Book (link in my signature).

Hope it helps.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 14587
Followers: 609

Kudos [?]: 176 [0], given: 0

Re: Four cards are randomly drawn from a pack of 52 cards. Find [#permalink]

### Show Tags

28 Nov 2015, 12:12
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: Four cards are randomly drawn from a pack of 52 cards. Find   [#permalink] 28 Nov 2015, 12:12
Similar topics Replies Last post
Similar
Topics:
If 2 cards are selected at random from the deck of 52 cards then What 1 27 Jul 2015, 05:45
2 If 2 cards are selected at random from the pack of 52 cards then What 1 27 Jul 2015, 05:38
If you are drawing one card from a regular deck of cards (52 cards 4 14 Jun 2015, 02:04
Three cards are drawn from a 52 card deck - no replacement. What is th 1 21 Sep 2010, 02:55
1 Two cards are drawn successively from a standard deck of 52 8 08 Jan 2010, 17:29
Display posts from previous: Sort by