Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 43792

Fresh Meat!!! [#permalink]
Show Tags
17 Apr 2013, 05:11
13
This post received KUDOS
Expert's post
78
This post was BOOKMARKED
The next set of PS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers.1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252A. I only B. II only C. III only D. I and III only E. I, II and III Solution: freshmeat15104680.html#p12153182. Set S contains 7 different letters. How many subsets of set S, including an empty set, contain at most 3 letters?A. 29 B. 56 C. 57 D. 63 E. 64 Solution: freshmeat151046100.html#p12153233. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?A. 16 B. 27 C. 31 D. 32 E. 64 Solution: freshmeat151046100.html#p12153294. The functions f and g are defined for all the positive integers n by the following rule: f(n) is the number of positive perfect squares less than n and g(n) is the number of primes numbers less than n. If f(x) + g(x) = 16, then x is in the range:A. 30 < x < 36 B. 30 < x < 37 C. 31 < x < 37 D. 31 < x < 38 E. 32 < x < 38 Solution: freshmeat151046100.html#p12153355. Which of the following is a factor of 18!+1?A. 15 B. 17 C. 19 D. 33 E. 39 Solution: freshmeat151046100.html#p12153386. If the least common multiple of a positive integer x, 4^3 and 6^5 is 6^6. Then x can take how many values?A. 1 B. 6 C. 7 D. 30 E. 36 Solution: freshmeat151046100.html#p12153457. The greatest common divisor of two positive integers is 25. If the sum of the integers is 350, then how many such pairs are possible?A. 1 B. 2 C. 3 D. 4 E. 5 Solution: freshmeat151046100.html#p12153498. The product of a positive integer x and 377,910 is divisible by 3,300, then the least value of x is:A. 10 B. 11 C. 55 D. 110 E. 330 Solution: freshmeat151046100.html#p12153599. What is the 101st digit after the decimal point in the decimal representation of 1/3 + 1/9 + 1/27 + 1/37?A. 0 B. 1 C. 5 D. 7 E. 8 Solution: freshmeat151046100.html#p121536710. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0A. I only B. II only C. III only D. I and III only E. None Solution: freshmeat151046100.html#p1215370Kudos points for each correct solution!!!
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 23 Apr 2013
Posts: 6

Re: Fresh Meat!!! [#permalink]
Show Tags
01 Jul 2013, 09:12
Hello.. Can someone please explain why "x" ( 15x:11x:9x) needs to be an integer? Why not 1.5?



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
01 Jul 2013, 09:23



Intern
Joined: 29 Aug 2012
Posts: 30
WE: General Management (Consulting)

Re: Fresh Meat!!! [#permalink]
Show Tags
07 Jul 2013, 06:56
1
This post received KUDOS
Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel, I did this exercise as follows: I eliminate the 0, so i have the following set: (1,2,3,4,5). Now, i use combinatorics. Set containing 5 elements: 5C5=1 Set containing 4 elements: 4C5=5 Set containing 3 elements: 3C5=10 Set containing 2 elements: 2C5=10 Set containing 1 elements: 1C5=5 So, the total of posibilites are 31. What am I missing here¿?? Thanks in advance



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
07 Jul 2013, 07:03
jacg20 wrote: Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel, I did this exercise as follows: I eliminate the 0, so i have the following set: (1,2,3,4,5). Now, i use combinatorics. Set containing 5 elements: 5C5=1 Set containing 4 elements: 4C5=5 Set containing 3 elements: 3C5=10 Set containing 2 elements: 2C5=10 Set containing 1 elements: 1C5=5 So, the total of posibilites are 31. What am I missing here¿?? Thanks in advance You are missing 1 empty set, which is a subset of the original set and also does not contain 0. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 23 Apr 2013
Posts: 6

Re: Fresh Meat!!! [#permalink]
Show Tags
08 Jul 2013, 08:03
1
This post received KUDOS
1 useful formula: 2^n=nc0 + nc1+ ..... + ncn; here n=5, ans= 2^5= 32



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
08 Jul 2013, 09:46



Intern
Joined: 06 Jun 2013
Posts: 26
Concentration: Finance, Economics
GPA: 3.92

Re: Fresh Meat!!! [#permalink]
Show Tags
08 Jul 2013, 10:26
Bunuel wrote: SOLUTIONS:
1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252
A. I only B. II only C. III only D. I and III only E. I, II and III
Given that the ratio of the diagonal is \(d_s:d_1:d_2=15x:11x:9x\), for some positive integer x (where \(d_s\) is the diagonal of square S and \(d_1\) and \(d_2\) are the diagonals of rhombus R).
\(area_{square}=\frac{d^2}{2}\) and \(area_{rhombus}=\frac{d_1*d_2}{2}\).
The difference is \(area_{square}area_{rhombus}=\frac{(15x)^2}{2}\frac{11x*9x}{2}=63x^2\).
If x=1, then the difference is 63; If x=2, then the difference is 252; In order the difference to be 126 x should be \(\sqrt{2}\), which is not possible.
Answer: D. Hi Bunuel, This is probably a stupid question. But why can't x be \sqrt{2}?



Intern
Joined: 06 Jun 2013
Posts: 26
Concentration: Finance, Economics
GPA: 3.92

Re: Fresh Meat!!! [#permalink]
Show Tags
08 Jul 2013, 10:28
Aho92 wrote: Bunuel wrote: SOLUTIONS:
1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252
A. I only B. II only C. III only D. I and III only E. I, II and III
Given that the ratio of the diagonal is \(d_s:d_1:d_2=15x:11x:9x\), for some positive integer x (where \(d_s\) is the diagonal of square S and \(d_1\) and \(d_2\) are the diagonals of rhombus R).
\(area_{square}=\frac{d^2}{2}\) and \(area_{rhombus}=\frac{d_1*d_2}{2}\).
The difference is \(area_{square}area_{rhombus}=\frac{(15x)^2}{2}\frac{11x*9x}{2}=63x^2\).
If x=1, then the difference is 63; If x=2, then the difference is 252; In order the difference to be 126 x should be \(\sqrt{2}\), which is not possible.
Answer: D. Hi Bunuel, This is probably a stupid question. But why can't x be \sqrt{2}? Okay. I got it. Stupid me. They have to be integers



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
08 Jul 2013, 23:40



Manager
Joined: 06 Jun 2012
Posts: 140

Re: Fresh Meat!!! [#permalink]
Show Tags
27 Aug 2013, 06:16
Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel, I solved it as below and got the answer wrong. Can you let me know what i did wrong and please explain your approach in more detail. Elements are {1, 2, 3, 4, 5} Subset of 1: 5C1 = 5 Subset of 2: 5C2 = 10 Subset of 3: 5C3 = 10 Subset of 4: 5C4 = 5 Subset of 5: 5C5 = 1 Total of 31.
_________________
Please give Kudos if you like the post



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
27 Aug 2013, 06:22
summer101 wrote: Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel, I solved it as below and got the answer wrong. Can you let me know what i did wrong and please explain your approach in more detail. Elements are {1, 2, 3, 4, 5} Subset of 1: 5C1 = 5 Subset of 2: 5C2 = 10 Subset of 3: 5C3 = 10 Subset of 4: 5C4 = 5 Subset of 5: 5C5 = 1 Total of 31. All is fine except that you are forgetting an empty set which is also a subset and do not contain 0. As for my solution check this post it might help: howmanysubordinatesdoesmarciahave57169.html#p692676
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 28 Jun 2013
Posts: 1

Re: Fresh Meat!!! [#permalink]
Show Tags
28 Aug 2013, 00:05
Bunuel wrote: SOLUTIONS:
1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252
A. I only B. II only C. III only D. I and III only E. I, II and III
Given that the ratio of the diagonal is \(d_s:d_1:d_2=15x:11x:9x\), for some positive integer x (where \(d_s\) is the diagonal of square S and \(d_1\) and \(d_2\) are the diagonals of rhombus R).
\(area_{square}=\frac{d^2}{2}\) and \(area_{rhombus}=\frac{d_1*d_2}{2}\).
The difference is \(area_{square}area_{rhombus}=\frac{(15x)^2}{2}\frac{11x*9x}{2}=63x^2\).
If x=1, then the difference is 63; If x=2, then the difference is 252; In order the difference to be 126 x should be \(\sqrt{2}\), which is not possible.
Answer: D. Thank you. I have a question  Why cant x be [square_root]2. Why cant we have sides of lengths 5*[square_root]2, 11*[square_root]2 and 9*[square_root]2?



Verbal Forum Moderator
Joined: 10 Oct 2012
Posts: 625

Re: Fresh Meat!!! [#permalink]
Show Tags
28 Aug 2013, 00:28
1
This post received KUDOS
Gagan1983 wrote: Bunuel wrote: SOLUTIONS:
[b]1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
Given that the ratio of the diagonal is \(d_s:d_1:d_2=15x:11x:9x\), for some positive integer x (where \(d_s\) is the diagonal of square S and \(d_1\) and \(d_2\) are the diagonals of rhombus R).
\(area_{square}=\frac{d^2}{2}\) and \(area_{rhombus}=\frac{d_1*d_2}{2}\).
The difference is \(area_{square}area_{rhombus}=\frac{(15x)^2}{2}\frac{11x*9x}{2}=63x^2\).
If x=1, then the difference is 63; If x=2, then the difference is 252; In order the difference to be 126 x should be \(\sqrt{2}\), which is not possible.
Answer: D. Thank you. I have a question  Why cant x be [square_root]2. Why cant we have sides of lengths 5*[square_root]2, 11*[square_root]2 and 9*[square_root]2? Firstly, these are not the sides of the given square and rhombus. They are diagonal values, where 15x corresponds to the square(where the diagonals are equal) and the 11x and 9x correspond to the rhombus(which has unequal diagonals). Also, it is mentioned that they are all integers, thus, if \(x = \sqrt{2}\), then the value of the diagonal of the square/rhombus will no longer be an integer. Hope this helps.
_________________
All that is equal and notDeep Dive Inequality
Hit and Trial for Integral Solutions



Manager
Joined: 23 Oct 2012
Posts: 55

Re: Fresh Meat!!! [#permalink]
Show Tags
31 Aug 2013, 09:50
Bunuel wrote: 6. If the least common multiple of a positive integer x, 4^3 and 6^5 is 6^6. Then x can take how many values?
A. 1 B. 6 C. 7 D. 30 E. 36
We are given that \(6^6=2^{6}*3^{6}\) is the least common multiple of the following three numbers:
x; \(4^3=2^6\); \(6^5 = 2^{5}*3^5\);
First notice that \(x\) cannot have any other primes other than 2 or/and 3, because LCM contains only these primes.
Now, since the power of 3 in LCM is higher than the powers of 3 in either the second number or in the third, than \(x\) must have \(3^{6}\) as its multiple (else how \(3^{6}\) would appear in LCM?).
Next, \(x\) can have 2 as its prime in ANY power ranging from 0 to 6, inclusive (it cannot have higher power of 2 since LCM limits the power of 2 to 6).
Thus, \(x\) could take total of 7 values.
Answer: C. Hi Bunuel, x can take factor of 2 with power from 2 to 6 or no factor of 2. So the answer can be 6 too. Please explain ! thanks
_________________
Kudos please!



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
31 Aug 2013, 09:55
2013gmat wrote: Bunuel wrote: 6. If the least common multiple of a positive integer x, 4^3 and 6^5 is 6^6. Then x can take how many values?
A. 1 B. 6 C. 7 D. 30 E. 36
We are given that \(6^6=2^{6}*3^{6}\) is the least common multiple of the following three numbers:
x; \(4^3=2^6\); \(6^5 = 2^{5}*3^5\);
First notice that \(x\) cannot have any other primes other than 2 or/and 3, because LCM contains only these primes.
Now, since the power of 3 in LCM is higher than the powers of 3 in either the second number or in the third, than \(x\) must have \(3^{6}\) as its multiple (else how \(3^{6}\) would appear in LCM?).
Next, \(x\) can have 2 as its prime in ANY power ranging from 0 to 6, inclusive (it cannot have higher power of 2 since LCM limits the power of 2 to 6).
Thus, \(x\) could take total of 7 values.
Answer: C. Hi Bunuel, x can take factor of 2 with power from 2 to 6 or no factor of 2. So the answer can be 6 too. Please explain ! thanks I don;t understand what you mean... x can take the following 7 values: \(3^6\); \(2*3^6\); \(2^2*3^6\); \(2^3*3^6\); \(2^4*3^6\); \(2^5*3^6\); \(2^6*3^6\).
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 07 Apr 2012
Posts: 121
Location: United States
Concentration: Entrepreneurship, Operations
GPA: 3.9
WE: Operations (Manufacturing)

Re: Fresh Meat!!! [#permalink]
Show Tags
31 Aug 2013, 21:23
1
This post received KUDOS
Cant we re write as 377910/3 X 11 X 10 X 10 ,
cancelling out 10, we get 37791 / 3 X 11 X 10
Eyeing 110 as one of the options, we check for divisibilty of 37791 for 3 and it is divisible.
which gives 12577 / 11 X 10, checked for 11, not divisible hence
minimum value of x is 11 X 10.
Please suggest Bunuel, if its wrong.



Manager
Joined: 07 Apr 2012
Posts: 121
Location: United States
Concentration: Entrepreneurship, Operations
GPA: 3.9
WE: Operations (Manufacturing)

Re: Fresh Meat!!! [#permalink]
Show Tags
31 Aug 2013, 21:30
\(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{37}=\frac{333}{999} + \frac{111}{999} + \frac{37}{999} + \frac{27}{999}=\frac{508}{999}=0.508508...\).
How do we get these fractions with a common denominator?



Math Expert
Joined: 02 Sep 2009
Posts: 43792

Re: Fresh Meat!!! [#permalink]
Show Tags
01 Sep 2013, 11:08



Manager
Joined: 30 May 2013
Posts: 186
Location: India
Concentration: Entrepreneurship, General Management
GPA: 3.82

Re: Fresh Meat!!! [#permalink]
Show Tags
02 Sep 2013, 19:28
Bunuel wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0
A. I only B. II only C. III only D. I and III only E. None
Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true.
Answer: E. Hi Bunuel, As per the question which of the following must be true. So as per the given choice B) II only is true right where 1^0 = 1 as X =1 and Y=0 given. As ur explanation gives another chance as X coud be = 1 , and Y = any even. Please clarify where i am wrong. Thanks in Advance, Rrsnathan



Manager
Status: How easy it is?
Joined: 09 Nov 2012
Posts: 119
Location: India
Concentration: Operations, General Management
GMAT 1: 650 Q50 V27 GMAT 2: 710 Q49 V37
GPA: 3.5
WE: Operations (Other)

Re: Fresh Meat!!! [#permalink]
Show Tags
02 Sep 2013, 23:53
One thing to add here:
If you want to convert any fraction with denominator 9, 99, 999, so on,to decimal form, then see what is the value of the fraction with 10, 100, 1000,so on, as denominator.
For eg, 457/999 = ?
See 457/1000 = 0.457
Then, 457/999 = 0.457457457457...
This knowledge comes very handy at times with complex fractions.







Go to page
Previous
1 2 3 4 5 6 7 8 9 10
Next
[ 185 posts ]



