Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 14 Jan 2017
Posts: 8

Re: Fresh Meat!!!
[#permalink]
Show Tags
30 May 2018, 04:31
Bunuel wrote: 4. The functions f and g are defined for all the positive integers n by the following rule: f(n) is the number of positive perfect squares less than n and g(n) is the number of primes numbers less than n. If f(x) + g(x) = 16, then x is in the range:
A. 30 < x < 36 B. 30 < x < 37 C. 31 < x < 37 D. 31 < x < 38 E. 32 < x < 38
Perfect squares: 1, 4, 9, 16, 25, 36, .., Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
If x = 31, then f(31) = 5 and g(31) = 10: f(x) + g(x) = 5 + 10 = 15. If x = 32, then f(32) = 5 and g(32) = 11: f(x) + g(x) = 5 + 11 = 16. ... If x = 36, then f(36) = 5 and g(36) = 11: f(x) + g(x) = 5 + 11 = 16. If x = 37, then f(37) = 6 and g(37) = 11: f(x) + g(x) = 6 + 11 = 17.
Thus x could be 32, 33, 34, 35 or 36: 31<x<37.
Answer: C. It is given "f(n) is the number of positive perfect squares less than n" then X should be greater than 36, with this answer comes to D. ??? please correct if I am wrong & please correct.



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Re: Fresh Meat!!!
[#permalink]
Show Tags
30 May 2018, 08:55
thunderbird350 wrote: Bunuel wrote: 4. The functions f and g are defined for all the positive integers n by the following rule: f(n) is the number of positive perfect squares less than n and g(n) is the number of primes numbers less than n. If f(x) + g(x) = 16, then x is in the range:
A. 30 < x < 36 B. 30 < x < 37 C. 31 < x < 37 D. 31 < x < 38 E. 32 < x < 38
Perfect squares: 1, 4, 9, 16, 25, 36, .., Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...
If x = 31, then f(31) = 5 and g(31) = 10: f(x) + g(x) = 5 + 10 = 15. If x = 32, then f(32) = 5 and g(32) = 11: f(x) + g(x) = 5 + 11 = 16. ... If x = 36, then f(36) = 5 and g(36) = 11: f(x) + g(x) = 5 + 11 = 16. If x = 37, then f(37) = 6 and g(37) = 11: f(x) + g(x) = 6 + 11 = 17.
Thus x could be 32, 33, 34, 35 or 36: 31<x<37.
Answer: C. It is given "f(n) is the number of positive perfect squares less than n" then X should be greater than 36, with this answer comes to D. ??? please correct if I am wrong & please correct. It's not clear from your post as to why should x be greater than 36. The solution you quote explains that x could be 32, 33, 34, 35 or 36: 31<x<37, which is answer C.
_________________



Manager
Joined: 24 Mar 2018
Posts: 246

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jul 2018, 02:47
Bunuel wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0
A. I only B. II only C. III only D. I and III only E. None
Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true.
Answer: E. Bunuel If we consider only I i.e x=1 1 to power anything will be one so shouldn't the OA be A ?



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jul 2018, 02:54
teaserbae wrote: Bunuel wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0
A. I only B. II only C. III only D. I and III only E. None
Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true.
Answer: E. Bunuel If we consider only I i.e x=1 1 to power anything will be one so shouldn't the OA be A ? The question asks: which of the following MUST be true, not COULD be true. Now, ask yourself is x = 1 ALWAYS true? Doesn't the solution you quote, gives an example when x = 1 is NOT true?
_________________



Manager
Joined: 24 Mar 2018
Posts: 246

Fresh Meat!!!
[#permalink]
Show Tags
Updated on: 23 Jul 2018, 03:10
Bunuel wrote: teaserbae wrote: Bunuel wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0
A. I only B. II only C. III only D. I and III only E. None
Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true.
Answer: E. Bunuel If we consider only I i.e x=1 1 to power anything will be one so shouldn't the OA be A ? The question asks: which of the following MUST be true, not COULD be true. Now, ask yourself is x = 1 ALWAYS true? Doesn't the solution you quote, gives an example when x = 1 is NOT true? BunuelYeah I got that but what's wrong with C ? X=1 than x^y=1 y=0 than x^y=1 there doesn't exsist any other case for which x^y is not equal to 1
Originally posted by teaserbae on 23 Jul 2018, 02:57.
Last edited by teaserbae on 23 Jul 2018, 03:10, edited 2 times in total.



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jul 2018, 03:09
teaserbae wrote: Bunuel wrote: teaserbae wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0A. I only B. II only C. III only D. I and III only E. None Bunuel If we consider only I i.e x=1 1 to power anything will be one so shouldn't the OA be A ? The question asks: which of the following MUST be true, not COULD be true. Now, ask yourself is x = 1 ALWAYS true? Doesn't the solution you quote, gives an example when x = 1 is NOT true? Yeah I got that but what's wrong with C ? X=1 than x^y=1 y=0 than x^y=1 there doesn't exsist any other case for which x^y is not equal to 1 I'll copy my solution here: Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true. Please read carefully.
_________________



Manager
Joined: 24 Mar 2018
Posts: 246

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jul 2018, 03:16
Bunuel wrote: teaserbae wrote: Bunuel wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0A. I only B. II only C. III only D. I and III only E. None Bunuel If we consider only I i.e x=1 1 to power anything will be one so shouldn't the OA be A ? The question asks: which of the following MUST be true, not COULD be true. Now, ask yourself is x = 1 ALWAYS true? Doesn't the solution you quote, gives an example when x = 1 is NOT true? I'll copy my solution here: Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true. Please read carefully. BunuelBy III x=1 or y=0 since x= 1 so y=0 Isn't (1)^0 = 1 ? As 0 is even integer



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jul 2018, 03:24
teaserbae wrote: Bunuel wrote: teaserbae wrote: 10. If x is not equal to 0 and x^y=1, then which of the following must be true?
I. x=1 II. x=1 and y=0 III. x=1 or y=0
A. I only B. II only C. III only D. I and III only E. None
The question asks: which of the following MUST be true, not COULD be true. Now, ask yourself is x = 1 ALWAYS true? Doesn't the solution you quote, gives an example when x = 1 is NOT true? I'll copy my solution here: Notice that if x=1 and y is any even number, then \((1)^{even}=1\), thus none of the options must be true. Please read carefully. BunuelBy III x=1 or y=0 since x= 1 so y=0 Isn't (1)^0 = 1 ? As 0 is even integer I'll try this last time. The question asks: which of the following MUST be true? None of the options is necessarily true because if x = 1, and say y = 2, then x^y = 1 and not I, not II and not III is true.
_________________



Rice (Jones) School Moderator
Joined: 18 Jun 2018
Posts: 314
Location: United States (AZ)
Concentration: Finance, Healthcare
GPA: 3.36

Re: Fresh Meat!!!
[#permalink]
Show Tags
09 Sep 2018, 11:48
Hello Bunuel, You mentioned that we can factor 17 in the solution to this problem, is that a typo? Thanks. Bunuel wrote: 5. Which of the following is a factor of 18!+1?
A. 15 B. 17 C. 19 D. 33 E. 39
18! and 18!+1 are consecutive integers. Two consecutive integers are coprime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1.
Now, since we can factor out each 15, 17, 33=3*11, and 39=3*13 out of 18!, then 15, 17, 33 and 39 ARE factors of 18! and are NOT factors of 18!+1. Therefore only 19 could be a factor of 18!+1.
Answer: C.



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Re: Fresh Meat!!!
[#permalink]
Show Tags
09 Sep 2018, 20:38
funsogu wrote: Hello Bunuel, You mentioned that we can factor 17 in the solution to this problem, is that a typo? Thanks. Bunuel wrote: 5. Which of the following is a factor of 18!+1?
A. 15 B. 17 C. 19 D. 33 E. 39
18! and 18!+1 are consecutive integers. Two consecutive integers are coprime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1.
Now, since we can factor out each 15, 17, 33=3*11, and 39=3*13 out of 18!, then 15, 17, 33 and 39 ARE factors of 18! and are NOT factors of 18!+1. Therefore only 19 could be a factor of 18!+1.
Answer: C. 17 is a factor of 18!: 18! = 1*2*3*...* 17*18.
_________________



Manager
Joined: 16 Oct 2017
Posts: 52
Location: India
GPA: 4

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jan 2019, 21:16
Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel Why didn't we approach this question in the same way as done in Q.2 of this thread? Following that approach would the solution be as follows? 6C5+6C4+6C3+6C2+6C1+1 (1 being added for the null set) thanks in advance.



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jan 2019, 21:28
applebear wrote: Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel Why didn't we approach this question in the same way as done in Q.2 of this thread? Following that approach would the solution be as follows? 6C5+6C4+6C3+6C2+6C1+1 (1 being added for the null set) thanks in advance. What is the logic behind this? It should be: 5C5 + 5C4 + 5C3 + 5C2 + 5C1 + 1 = 1 + 5 + 10 + 10 + 5 + 1 = 32.
_________________



Manager
Joined: 16 Oct 2017
Posts: 52
Location: India
GPA: 4

Re: Fresh Meat!!!
[#permalink]
Show Tags
23 Jan 2019, 21:33
Bunuel wrote: applebear wrote: Bunuel wrote: 3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D. Hi Bunuel Why didn't we approach this question in the same way as done in Q.2 of this thread? Following that approach would the solution be as follows? 6C5+6C4+6C3+6C2+6C1+1 (1 being added for the null set) thanks in advance. What is the logic behind this? It should be: 5C5 + 5C4 + 5C3 + 5C2 + 5C1 + 1 = 1 + 5 + 10 + 10 + 5 + 1 = 32. thank you for the early reply. i now realise it was a silly mistake on my part.



Intern
Joined: 04 Sep 2016
Posts: 16

Re: Fresh Meat!!!
[#permalink]
Show Tags
07 Aug 2019, 05:23
Bunuel wrote: 8. The product of a positive integer x and 377,910 is divisible by 3,300, then the least value of x is:
A. 10 B. 11 C. 55 D. 110 E. 330
Given: \(\frac{377,910 *x}{3,300}=integer\).
Factorize the divisor: \(3,300=2^2*3*5^2*11\).
Check 377,910 for divisibility by 2^2: 377,910 IS divisible by 2 and NOT divisible by 2^2=4 (since its last two digits, 10, is not divisible by 4). Thus x must have 2 as its factor (377,910 is divisible only by 2 so in order 377,910*x to be divisible by 2^2, x must have 2 as its factor);
Check 377,910 for divisibility by 3: 3+7+7+9+1+0=27, thus 377,910 IS divisible by 3.
Check 377,910 for divisibility by 5^2: 377,910 IS divisible by 5 and NOT divisible by 25 (in order a number to be divisible by 25 its last two digits must be 00, 25, 50, or 75, so 377,910 is NOT divisible by 25). Thus x must have 5 as its factor.
Check 377,910 for divisibility by 11: (7+9+0)(3+7+1)=5, so 377,910 is NOT divisible by 11, thus x must have 11 as its factor.
Therefore the least value of x is \(2*5*11=110\).
Answer: D. Please how did you arrive at "Therefore the least value of x is 2∗5∗11=1102∗5∗11=110." ?



Manager
Joined: 27 Oct 2019
Posts: 54

Re: Fresh Meat!!!
[#permalink]
Show Tags
22 Nov 2019, 04:02
Bunuel wrote: pclawong wrote: Bunuel wrote: 7. The greatest common divisor of two positive integers is 25. If the sum of the integers is 350, then how many such pairs are possible?
A. 1 B. 2 C. 3 D. 4 E. 5
We are told that the greatest common factor of two integers is 25. So, these integers are \(25x\) and \(25y\), for some positive integers \(x\) and \(y\). Notice that \(x\) and \(y\) must not share any common factor but 1, because if they do, then GCF of \(25x\) and \(25y\) will be more that 25.
Next, we know that \(25x+25y=350\) > \(x+y=14\) > since \(x\) and \(y\) don't share any common factor but 1 then (x, y) can be only (1, 13), (3, 11) or (5, 9) (all other pairs (2, 12), (4, 10), (6, 8) and (7, 7) do share common factor greater than 1).
So, there are only three pairs of such numbers possible: 25*1=25 and 25*13=325; 25*3=75 and 25*11=275; 25*5=125 and 25*9=225.
Answer: C. Bunuel, How do we know if x and y do not share any common factor? what is the hint? Thank you If x and y are NOT coprime, the GCD of \(25x\) and \(25y\) will be more than 25, not 25 as given. Why aren't we including (9,5), (11,3) and (13,1). Moreover how would this question be solved if we were told that the least common multiple of two numbers is 350?? Posted from my mobile device



Math Expert
Joined: 02 Sep 2009
Posts: 59634

Fresh Meat!!!
[#permalink]
Show Tags
22 Nov 2019, 04:14
ssshyam1995 wrote: Bunuel wrote: 7. The greatest common divisor of two positive integers is 25. If the sum of the integers is 350, then how many such pairs are possible?
A. 1 B. 2 C. 3 D. 4 E. 5
We are told that the greatest common factor of two integers is 25. So, these integers are \(25x\) and \(25y\), for some positive integers \(x\) and \(y\). Notice that \(x\) and \(y\) must not share any common factor but 1, because if they do, then GCF of \(25x\) and \(25y\) will be more that 25.
Next, we know that \(25x+25y=350\) > \(x+y=14\) > since \(x\) and \(y\) don't share any common factor but 1 then (x, y) can be only (1, 13), (3, 11) or (5, 9) (all other pairs (2, 12), (4, 10), (6, 8) and (7, 7) do share common factor greater than 1).
So, there are only three pairs of such numbers possible: 25*1=25 and 25*13=325; 25*3=75 and 25*11=275; 25*5=125 and 25*9=225.
Answer: C. Why aren't we including (9,5), (11,3) and (13,1). Moreover how would this question be solved if we were told that the least common multiple of two numbers is 350?? Posted from my mobile device1. Don't we have these pairs? If we include say (9,5) along with (5,9) do we get different two numbers? 2. If it were not given that the sum is 350, then the answer will be  infinitely many.
_________________



Manager
Joined: 27 Oct 2019
Posts: 54

Re: Fresh Meat!!!
[#permalink]
Show Tags
22 Nov 2019, 04:44
Bunuel wrote: ssshyam1995 wrote: Bunuel wrote: 7. The greatest common divisor of two positive integers is 25. If the sum of the integers is 350, then how many such pairs are possible?
A. 1 B. 2 C. 3 D. 4 E. 5
We are told that the greatest common factor of two integers is 25. So, these integers are \(25x\) and \(25y\), for some positive integers \(x\) and \(y\). Notice that \(x\) and \(y\) must not share any common factor but 1, because if they do, then GCF of \(25x\) and \(25y\) will be more that 25.
Next, we know that \(25x+25y=350\) > \(x+y=14\) > since \(x\) and \(y\) don't share any common factor but 1 then (x, y) can be only (1, 13), (3, 11) or (5, 9) (all other pairs (2, 12), (4, 10), (6, 8) and (7, 7) do share common factor greater than 1).
So, there are only three pairs of such numbers possible: 25*1=25 and 25*13=325; 25*3=75 and 25*11=275; 25*5=125 and 25*9=225.
Answer: C. Why aren't we including (9,5), (11,3) and (13,1). Moreover how would this question be solved if we were told that the least common multiple of two numbers is 350?? Posted from my mobile device1. Don't we have these pairs? If we include say (9,5) along with (5,9) do we get different two numbers? 2. If it were not given that the sum is 350, then the answer will be  infinitely many. Regarding the LCM part I meant we just changes HCF from the question and make it LCM. Then how will we proceed with the question??







Go to page
Previous
1 2 3 4 5 6 7 8 9
[ 177 posts ]



