Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

How many five digit numbers can be formed using digits 0,1,2,3,4,5, Which are divisible by 3, whithout any of the digits repeating?

A. 15 B. 96 C. 120 D. 181 E. 216

First step: We should determine which 5 digits from given 6, would form the 5 digit number divisible by 3.

We have six digits: 0,1,2,3,4,5. Their sum=15.

For a number to be divisible by 3 the sum of the digits must be divisible by 3. As the sum of the six given numbers is 15 (divisible by 3) only 5 digits good to form our 5 digit number would be 15-0={1, 2, 3, 4, 5} and 15-3={0, 1, 2, 4, 5}. Meaning that no other 5 from given six will total the number divisible by 3.

Second step:

We have two set of numbers: {1, 2, 3, 4, 5} and {0, 1, 2, 4, 5}. How many 5 digit numbers can be formed using this two sets:

{1, 2, 3, 4, 5} --> 5! as any combination of these digits would give us 5 digit number divisible by 3. 5!=120.

{0, 1, 2, 4, 5} --> here we can not use 0 as the first digit, otherwise number won't be any more 5 digit and become 4 digit. So, total combinations 5!, minus combinations with 0 as the first digit (combination of 4) 4! --> 5!-4!=96

By the property of divisibility by 3 i.e "a no: is divisible by 3, if the sum of the digits is divisible by 3"(e.g= 12-->1+2=3)

so from 0,1,2,3,4,5 the set of 5 digit no:s that can be formed which is divisible by 3 are 0,1,2,4,5(sum=12) & 1,2,3,4,5(sum=15)

from first set(0,1,2,4,5) no:s formed are 96 i.e first digit can be formed from any 4 no: except 0, second digit from 4 no: except digit used at first place,3rd from rest 3 , 4th from rest 2 no: and in fifth remaining digit since no repetition allowed.

from second set(1,2,3,4,5) no:s formed are 120 i.e first digit can be formed from any 5 digits, second digit from 4 no: except digit used at first place,3rd from rest 3 , 4th from rest 2 no: and in fifth remaining digit since no repetition allowed.

so lets say we were asked a multiple of 5 so in that case we would have to withdraw the digit 5 ..is that correct ?

5 or 0, as 0 is also a multiple of 5.

AGAIN: we have (sum of 6 digits)=(multiple of 3). Question what digit should we withdraw so that the sum of the remaining 5 digits remain a multiple of 3? Answer: the digit which is itself a multiple of 3.

Below might help to understand this concept better.

If integers \(a\) and \(b\) are both multiples of some integer \(k>1\) (divisible by \(k\)), then their sum and difference will also be a multiple of \(k\) (divisible by \(k\)): Example: \(a=6\) and \(b=9\), both divisible by 3 ---> \(a+b=15\) and \(a-b=-3\), again both divisible by 3.

If out of integers \(a\) and \(b\) one is a multiple of some integer \(k>1\) and another is not, then their sum and difference will NOT be a multiple of \(k\) (divisible by \(k\)): Example: \(a=6\), divisible by 3 and \(b=5\), not divisible by 3 ---> \(a+b=11\) and \(a-b=1\), neither is divisible by 3.

If integers \(a\) and \(b\) both are NOT multiples of some integer \(k>1\) (divisible by \(k\)), then their sum and difference may or may not be a multiple of \(k\) (divisible by \(k\)): Example: \(a=5\) and \(b=4\), neither is divisible by 3 ---> \(a+b=9\), is divisible by 3 and \(a-b=1\), is not divisible by 3; OR: \(a=6\) and \(b=3\), neither is divisible by 5 ---> \(a+b=9\) and \(a-b=3\), neither is divisible by 5; OR: \(a=2\) and \(b=2\), neither is divisible by 4 ---> \(a+b=4\) and \(a-b=0\), both are divisible by 4.

Re: How many five-digit numbers can be formed using digits [#permalink]

Show Tags

13 Jan 2013, 23:40

1

This post received KUDOS

I did in 1 min 18 sec. At first I wanted to choose a set of five digits, but started to worry about the complications with the leading zero.

Then I thought that the last digits could always be chosen in only two ways so as to ensure divisibility by three - however, I quickly realized that I would not get all different digits.

Then I realized that once I get a number I can keep permuting the digits while still getting valid numbers.

In an attempt to avoid the leading zero I tried 12345 and noticed that it was divisible by 3. Thus, I've got 5!=120 answers and immediately eliminated two answers, A and B.

Then I addressed the case of a leading zero. Since I wanted to preserve divisibility by 3, I quickly saw that I could only use 0 instead of 3. Thus, the only other possible set was {0, 1, 2, 4, 5}. I tried adding another 5! and got 240, so the answer was slightly less than that.

After that I knew I had to subtract 4!=24 to account for all the possibilities with a leading zero, which left me with 240-24=216. This is how I do such problems...
_________________

Sergey Orshanskiy, Ph.D. I tutor in NYC: http://www.wyzant.com/Tutors/NY/New-York/7948121/#ref=1RKFOZ

I tried to do as follows: take all 5 digit numbers possible : 5 *5*4*3*2 divide by 3 to get all numbers divisible by 3.

What is wrong with this logic?

We cannot do this because we have the asymmetric 0 as one of the digits. The number of 5 digit numbers that can be formed with 0, 1, 2, 3 and 4 is different from the number of 5 digit numbers that can be formed with 1, 2, 3, 4 and 5 (because 0 cannot be the first digit).

Had the digits been 1, 2, 3, 4, 5 and 6, then your method would have been correct.

If 0 is included: {0, 1, 2, 3, 4} --> 96 5-digit numbers possible with this set. {0, 1, 2, 3, 5} --> 96 5-digit numbers possible with this set. {0, 1, 2, 4, 5} --> 96 5-digit numbers possible with this set. - All these numbers are divisible by 3 {0, 1, 3, 4, 5} --> 96 5-digit numbers possible with this set. {0, 2, 3, 4, 5} --> 96 5-digit numbers possible with this set. {1, 2, 3, 4, 5} --> 120 5-digit numbers possible with this set. - All these numbers are divisible by 3 The number of 5 digit numbers in these sets is not the same - Sets with 0 have fewer numbers

If 0 is not included: {1, 2, 3, 4, 5} --> 120 5-digit numbers possible with this set. {1, 2, 3, 4, 6} --> 120 5-digit numbers possible with this set. {1, 2, 3, 5, 6} --> 120 5-digit numbers possible with this set. - All these numbers are divisible by 3 {1, 2, 4, 5, 6} --> 120 5-digit numbers possible with this set. {1, 3, 4, 5, 6} --> 120 5-digit numbers possible with this set. {2, 3, 4, 5, 6} --> 120 5-digit numbers possible with this set. - All these numbers are divisible by 3 Here exactly 1/3rd of the numbers will be divisible by 3.
_________________

How many five-digit numbers can be formed using the digits 0, 1, 2, 3, 4 and 5 which are divisible by 3, without repeating the digits?

(C) 2008 GMAT Club - m04#32

15 96 120 181 216

HOW DO YOU SOLVE THIS, I CAN'T UNDERSTAND IT

For a number to be divisible by 3 sum of its digits should be divisible by 3, so in 0,1,2,3,4,5 set of digits that can be together 1,2,3,4,5, and 0,1,2,4,5 (drop one digit at a time and sum rest of the others to find this ) in first set numbers that can be there = 5*4*3*2*1 in second set = 4*4*3*2*1 (since zero cannot be the last digit)

total = 5*4*3*2*1 + 4*4*3*2*1 = 4! * (5+4) = 24 * 9 = 216, hence 216 is the answer.
_________________

For a number to be divisible by 3 the sum of the digits must be divisible by 3. As the sum of the six given numbers is 15 (divisible by 3) only 5 digits good to form our 5 digit number would be 15-0={1, 2, 3, 4, 5} and 15-3={0, 1, 2, 4, 5}. Meaning that no other 5 from given six will total the number divisible by 3.

i understood the first part but did not get the second part 15-3={0, 1, 2, 4, 5}. Meaning that no other 5 from given six will total the number divisible by 3. ..Could you please explain it in a little bit more detail. Thanks
_________________

For a number to be divisible by 3 the sum of the digits must be divisible by 3. As the sum of the six given numbers is 15 (divisible by 3) only 5 digits good to form our 5 digit number would be 15-0={1, 2, 3, 4, 5} and 15-3={0, 1, 2, 4, 5}. Meaning that no other 5 from given six will total the number divisible by 3.

i understood the first part but did not get the second part 15-3={0, 1, 2, 4, 5}. Meaning that no other 5 from given six will total the number divisible by 3. ..Could you please explain it in a little bit more detail. Thanks

The sum of the given digits is already a multiple of 3 (15), in order the sum of 5 digits to be a multiple of 3 you must withdraw a digit which is itself a multiple of 3, otherwise (multiple of 3) - (non-multiple of 3) = (non-multiple of 3).
_________________

Campus visits play a crucial role in the MBA application process. It’s one thing to be passionate about one school but another to actually visit the campus, talk...

Its been long time coming. I have always been passionate about poetry. It’s my way of expressing my feelings and emotions. And i feel a person can convey...

Marty Cagan is founding partner of the Silicon Valley Product Group, a consulting firm that helps companies with their product strategy. Prior to that he held product roles at...

Written by Scottish historian Niall Ferguson , the book is subtitled “A Financial History of the World”. There is also a long documentary of the same name that the...