It is currently 28 Jun 2017, 02:54

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# How many integer points lie between points A and B on the

Author Message
VP
Joined: 09 Jul 2007
Posts: 1100
Location: London
How many integer points lie between points A and B on the [#permalink]

### Show Tags

03 Nov 2007, 18:48
00:00

Difficulty:

(N/A)

Question Stats:

100% (00:00) correct 0% (00:00) wrong based on 1 sessions

### HideShow timer Statistics

This topic is locked. If you want to discuss this question please re-post it in the respective forum.

How many integer points lie between points A and B on the line segment AB, if A is (5, 7) and B is (10, -3)?

(A) 4
(B) 5
(C) 6
(D) 10
(E) 15
Senior Manager
Joined: 01 Sep 2006
Posts: 301
Location: Phoenix, AZ, USA

### Show Tags

03 Nov 2007, 20:09
Ravshonbek wrote:
How many integer points lie between points A and B on the line segment AB, if A is (5, 7) and B is (10, -3)?

(A) 4
(B) 5
(C) 6
(D) 10
(E) 15

I would say 15.

Along y axis 7+3=10 distinct integer points example 7,6,5,4,...0,-1,-2,-3
Along x axis 10-5=5 distinct points exmaple 5,6,7,8,9,10

Total 15 distinct x,y points
Anser E
Director
Joined: 13 Nov 2003
Posts: 789
Location: BULGARIA

### Show Tags

03 Nov 2007, 23:42
Hi,
The equation of the line is y=-2*x+17 substituting for x= 6,7,8 and 9 we get values for y 5,3,1 and -2 then the ans to the question is 4
Manager
Joined: 25 Nov 2006
Posts: 59

### Show Tags

03 Nov 2007, 23:57
Get the equation of the line which pass through the points A and B....
we get 2x+y=17 now start substituting x and y values where the x lies between +5 and +10.........5<x<10 and find all the possible integer solutions of y....similarly find all possible integral solutions of x where y ranges from +7 and -3...i.e 7<y<-3.......
so we have 4 such possible integral solutions....

03 Nov 2007, 23:57
Display posts from previous: Sort by