It is currently 19 Nov 2017, 03:53

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# How many integers are divisible by 3 between 10! and 10! + 20 inclusiv

Author Message
TAGS:

### Hide Tags

CEO
Joined: 29 Mar 2007
Posts: 2553

Kudos [?]: 528 [0], given: 0

How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

16 Oct 2007, 10:41
17
This post was
BOOKMARKED
00:00

Difficulty:

45% (medium)

Question Stats:

53% (00:48) correct 47% (00:45) wrong based on 480 sessions

### HideShow timer Statistics

How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02
[Reveal] Spoiler: OA

Kudos [?]: 528 [0], given: 0

Manager
Joined: 02 Aug 2007
Posts: 145

Kudos [?]: 51 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

16 Oct 2007, 10:48
Here's how I would approach this one:
(10! + 20) - 10! = 20 total integers

Since 10! doesn't include the integer 0, there are 20 integers possible. So 20 / 3 = 6 2/3 or 6 integers.

A. 6

Kudos [?]: 51 [0], given: 0

CEO
Joined: 29 Mar 2007
Posts: 2553

Kudos [?]: 528 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

16 Oct 2007, 10:49
yuefei wrote:
Here's how I would approach this one:
(10! + 20) - 10! = 20 total integers

Since 10! doesn't include the integer 0, there are 20 integers possible. So 20 / 3 = 6 2/3 or 6 integers.

A. 6

I said 6 too. This is a challenges problem, but I think the answer 7 is incorrect.

it says between 10! and 10! +20, so im guessin its a mistake.

Kudos [?]: 528 [0], given: 0

Manager
Joined: 02 Oct 2007
Posts: 106

Kudos [?]: 4 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

16 Oct 2007, 10:55
B - 7

10! is divisible by 3 - The way I look Factorials is that any number included will also be divisible by the product. 10,9,8,7,6,5,4,3,2,1 are all divisors of 10!

There are 6 numbers between 10! and 10!+20 that are divisible by 3.

Hence 7

Kudos [?]: 4 [0], given: 0

CEO
Joined: 29 Mar 2007
Posts: 2553

Kudos [?]: 528 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

16 Oct 2007, 11:11
JDMBA wrote:
B - 7

10! is divisible by 3 - The way I look Factorials is that any number included will also be divisible by the product. 10,9,8,7,6,5,4,3,2,1 are all divisors of 10!

There are 6 numbers between 10! and 10!+20 that are divisible by 3.

Hence 7

Im just not getting this problem.

I know 10! is divisible by 3. U can just add up the digits of 10! and see that its divisible by 3. But...

it says the numbers between 10! and 10! +20, why are we including 10!??????

Last edited by GMATBLACKBELT on 16 Oct 2007, 11:14, edited 1 time in total.

Kudos [?]: 528 [0], given: 0

CEO
Joined: 29 Mar 2007
Posts: 2553

Kudos [?]: 528 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

16 Oct 2007, 12:43
OlgaN wrote:
GMATBLACKBELT wrote:
yuefei wrote:
The question says "Inclusive"

Bah

Look, it is very simple. Try this: how many numbers from 1 to 100 inclusive? Not 100-1=99 NO NO NO It is 100-99+1=100. What is 1 here? It is the fist number in your question : 10!. You must count it if it is divisible by 3.

Do not be upset. I have known this only yesterday. My tutor explained it to me.

Thx, I get it, I just hate that I missed the "inclusive" part.

Like a problem the other day i did from MGMAT.

http://www.gmatclub.com/forum/t53866

For some reason my brain was saying .9^2 is already multplied by itself, you dont have to do .9^2*.9^2. I hate it when I get like this, my mind refuses to look at the obvious =(

Kudos [?]: 528 [0], given: 0

Senior Manager
Status: Math is psycho-logical
Joined: 07 Apr 2014
Posts: 437

Kudos [?]: 141 [0], given: 169

Location: Netherlands
GMAT Date: 02-11-2015
WE: Psychology and Counseling (Other)
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

25 Feb 2015, 10:53
There are a few things I don't understand with this question.

1) If 10! is 1x2x3x4x5x6x7x8x9x10, then why does it count only once (namely as a number 10!), as divisible by 3? So, I knew that 10! is divisible by 3, but I thought we needed to account for all the factors of 10! that are divisble by 3.

For example, 3,6,9 are divisible by 3. Also, 3*4=12, is also divisible by 3. Or 5x3=15 is also divisible by 3. This is why I was lost, because then there are numerous numbers that we can create that are divisible by 3.

But I guess the question clearly states that 10! is a number and I shouldn't have thought of it like 1x2x3x4x5x6x7x8x9x10. Right?

2) "There are 6 numbers between 10! and 10!+20 that are divisible by 3". Which numbers are those? How did you know what 10! is? Or you knew that it would end with 0, so the numbers that are divisible by 3 between 0 and 20 are 6 (3,6,9,12,15,18).

Thanx!

Kudos [?]: 141 [0], given: 169

Math Expert
Joined: 02 Sep 2009
Posts: 42246

Kudos [?]: 132650 [1], given: 12331

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

25 Feb 2015, 11:03
1
KUDOS
Expert's post
10
This post was
BOOKMARKED
GMATBLACKBELT wrote:
How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02

Since 10! itself is a multiple of 3 (10!=2*3*...*10), then the question boils down to: how many integers from some multiple of 3 to that multiple of 3 + 20, inclusive are divisible by 3?

Or: how many integers are divisible by 3 from 0 to 20, inclusive?

# of multiples of $$x$$ in the range $$= \frac{\text{Last multiple of x in the range - First multiple of x in the range}}{x}+1$$.

So, $$\frac{18-0}{3}+1=7$$.

_________________

Kudos [?]: 132650 [1], given: 12331

EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 10120

Kudos [?]: 3509 [4], given: 173

Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

25 Feb 2015, 17:17
4
KUDOS
Expert's post
4
This post was
BOOKMARKED
Hi All,

This question is ultimately about "factoring" and why numbers divide evenly into other numbers.

I'm going to start with a simple example and work up to the details in this prompt:

You probably know that 3 divides evenly into 3! (3! = 1x2x3). We can factor out a 3 and get 3(2); mathematically, this means that 3 divides evenly into 3!

The same applies to 4! (4! = 1x2x3x4). We can factor out a 3 and get 3(1x2x4); so this means that 3 divides evenly into 4! In this same way, we know that 3 divides evenly into 5!, 6!, 7!, etc. We now know that 3 divides evenly into 10!.

Does 3 divide into 3! + 1? No, because you CAN'T factor out a 3.
Does 3 divide into 3! + 2? No, because you CAN'T factor out a 3.
Does 3 divide into 3! + 3? YES, because you CAN factor out a 3. You'd have 3(1x2 + 1).

This same rule applies to the range of values between 10! and 10! + 20

3 will divide evenly into:
10!
10! + 3
10! + 6
10! + 9
10! + 12
10! + 15
10! + 18

[Reveal] Spoiler:
B

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

# Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/ ***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*********************** Kudos [?]: 3509 [4], given: 173 Director Joined: 05 Mar 2015 Posts: 963 Kudos [?]: 291 [0], given: 41 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink] ### Show Tags 25 Dec 2015, 19:48 [quote="EMPOWERgmatRichC"]Hi All, This question is ultimately about "factoring" and why numbers divide evenly into other numbers. I'm going to start with a simple example and work up to the details in this prompt: You probably know that 3 divides evenly into 3! (3! = 1x2x3). We can factor out a 3 and get 3(2); mathematically, this means that 3 divides evenly into 3! The same applies to 4! (4! = 1x2x3x4). We can factor out a 3 and get 3(1x2x4); so this means that 3 divides evenly into 4! In this same way, we know that 3 divides evenly into 5!, 6!, 7!, etc. We now know that 3 divides evenly into 10!. Does 3 divide into 3! + 1? No, because you CAN'T factor out a 3. Does 3 divide into 3! + 2? No, because you CAN'T factor out a 3. Does 3 divide into 3! + 3? YES, because you CAN factor out a 3. You'd have 3(1x2 + 1). This same rule applies to the range of values between 10! and 10! + 20 3 will divide evenly into: 10! 10! + 3 10! + 6 10! + 9 10! + 12 10! + 15 10! + 18 but don't we r getting 2 3's in (10! + 9) as 3^2(1*2*4*5*2*7.....+1) ?? Kudos [?]: 291 [0], given: 41 EMPOWERgmat Instructor Status: GMAT Assassin/Co-Founder Affiliations: EMPOWERgmat Joined: 19 Dec 2014 Posts: 10120 Kudos [?]: 3509 [0], given: 173 Location: United States (CA) GMAT 1: 800 Q51 V49 GRE 1: 340 Q170 V170 Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink] ### Show Tags 25 Dec 2015, 21:38 Hi rohit8865, Yes, some of the terms COULD end up factoring out 3^2, but we're not asked to do THAT math - we're just asked how many of the terms are divisible by 3. Each of the 7 numbers in the list are divisible by 3. GMAT assassins aren't born, they're made, Rich _________________ 760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com # Rich Cohen Co-Founder & GMAT Assassin Special Offer: Save$75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Kudos [?]: 3509 [0], given: 173

Retired Moderator
Joined: 12 Aug 2015
Posts: 2213

Kudos [?]: 869 [0], given: 602

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

14 Mar 2016, 01:17
Nice Question
Here the rule i used is Multiple +Multiple = Multiple
hence 10!,10!+{3,6,9,12,15,18} are divisible by 3
hence B
_________________

Give me a hell yeah ...!!!!!

Kudos [?]: 869 [0], given: 602

Director
Joined: 17 Dec 2012
Posts: 623

Kudos [?]: 534 [1], given: 16

Location: India
Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

14 Mar 2016, 01:28
1
KUDOS
Expert's post
GMATBLACKBELT wrote:
How many integers are divisible by 3 between 10! and 10! + 20 inclusive?

A. 6
B. 7
C. 8
D. 9
E. 10

M25-02

Since the question says inclusive , one has to first figure out whether 10! and 10!+20 are divisible by 3. We know that 10! is divisible by 3 and so 10! + 20 cannot be divisible by 3. Between them there are 6 numbers that are divisible by 3. So a total of 7.
_________________

Srinivasan Vaidyaraman
Sravna
http://www.sravnatestprep.com/regularcourse.php

Standardized Approaches

Kudos [?]: 534 [1], given: 16

Non-Human User
Joined: 09 Sep 2013
Posts: 15684

Kudos [?]: 282 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv [#permalink]

### Show Tags

13 Jun 2017, 02:20
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 282 [0], given: 0

Re: How many integers are divisible by 3 between 10! and 10! + 20 inclusiv   [#permalink] 13 Jun 2017, 02:20
Display posts from previous: Sort by