GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Aug 2018, 10:13

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

How many positive integers less than 10,000 are there in

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47967
Re: Integers less than 10,000  [#permalink]

Show Tags

New post 26 May 2013, 04:47
cumulonimbus wrote:
Bunuel wrote:
anilnandyala wrote:
thanks Bunuel
can u explain me this by using the formulae
How many positive integers less than 10,000 are there in which the sum of the digits equals 6?
thanks in advance


6 * (digits) and 3 ||| --> ******||| --> # of permutations of these symbols is \(\frac{9!}{6!3!}\).

Or: The total number of ways of dividing n identical items (6 *'s in our case) among r persons or objects (4 digt places in our case), each one of whom, can receive 0, 1, 2 or more items (from zero to 6 in our case) is \({n+r-1}_C_{r-1}\).

In our case we'll get: \({n+r-1}_C_{r-1}={6+4-1}_C_{4-1}={9}C3=\frac{9!}{6!3!}\).

Hope it's clear.



Hi Bunnel,

Can I say that this involves the placement of 5 identical 1's in four places such that each place can receive 0 to 5 1's.


Yes, that's correct.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 27 Jul 2013
Posts: 2
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 25 Nov 2013, 05:18
Excellent solution Bunuel. Saves a minute at minimum !!! :)
Intern
Intern
avatar
Joined: 21 Sep 2013
Posts: 1
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 29 Nov 2013, 11:03
Hi Bunnel, please can explain when the separator concept is to be used and how to use it. Basically i did not understand in this question that why have we considered only 4 digit number. Please help.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47967
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 29 Nov 2013, 11:09
nayan19 wrote:
Hi Bunnel, please can explain when the separator concept is to be used and how to use it. Basically i did not understand in this question that why have we considered only 4 digit number. Please help.


Integers less than 10,000 are 1, 2, or 3-digit numbers. Post here: how-many-positive-integers-less-than-10-000-are-there-in-85291.html#p710836 explains that we can get single-digit as well as 2 or 3-digit numbers with that approach (check the examples there).

Similar questions to practice:
larry-michael-and-doug-have-five-donuts-to-share-if-any-108739.html
in-how-many-ways-can-5-different-rings-be-worn-in-four-126991.html

Hope this helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Status: Student
Joined: 26 Aug 2013
Posts: 220
Location: France
Concentration: Finance, General Management
Schools: EMLYON FT'16
GMAT 1: 650 Q47 V32
GPA: 3.44
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 27 Dec 2013, 15:33
Exceptionnal technique! Thanks all for this! Saves a lot of time in a lot of situations!

Incredible minds!

thanks !!
_________________

Think outside the box

Intern
Intern
avatar
Joined: 07 May 2013
Posts: 7
Concentration: Entrepreneurship, Strategy
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 05 May 2014, 17:39
Bunuel's method was clearly simpler and faster, though I would hardly come up with a similar solution in the gmat.

I did it in a different way, can someone check if the approach was valid?

5 and 0s: 4P1*3C3 = 4*1 = 4
4, 1 and 0s: 4P1*3P1*2C2 = 4*3*1 = 12
3, 2 and 0s: 4P1*3P1*2C2 = 4*3*1 = 12
2, 2, 1 and 0: 4P2*2P1*1 = 12*2 = 24
2, 1, 1, 1: 4P1*3C3 = 4*1 = 4

4 + 12+ 12 + 24 + 4 = 56
Intern
Intern
avatar
Status: Preparing for GMAT
Joined: 01 Nov 2014
Posts: 3
Location: Egypt
Concentration: Human Resources, International Business
GMAT Date: 01-02-2015
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 30 Nov 2014, 14:45
Hey Bunel
would you plz tell me in this formula 8! / (5!*3!) ,you got the numbers 8,5, and 3 from where ???
Manager
Manager
avatar
B
Joined: 10 Mar 2014
Posts: 212
Premium Member
How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 15 Dec 2014, 05:33
Bunuel wrote:
Ramsay wrote:
Sorry guys,

Could someone please explain the following:

"There are 8C3 ways to determine where to place the separators"

I'm not familiar with this shortcut/approach.

Ta


Consider this: we have 5 \(d\)'s and 3 separators \(|\), like: \(ddddd|||\). How many permutations (arrangements) of these symbols are possible? Total of 8 symbols (5+3=8), out of which 5 \(d\)'s and 3 \(|\)'s are identical, so \(\frac{8!}{5!3!}=56\).

With these permutations we'll get combinations like: \(|dd|d|dd\) this would be 3 digit number 212 OR \(|||ddddd\) this would be single digit number 5 (smallest number less than 10,000 in which sum of digits equals 5) OR \(ddddd|||\) this would be 4 digit number 5,000 (largest number less than 10,000 in which sum of digits equals 5)...

Basically this arrangements will give us all numbers less than 10,000 in which sum of the digits (sum of 5 d's=5) equals 5.

Hence the answer is \(\frac{8!}{5!3!}=56\).

Answer: C (56).

This can be done with direct formula as well:

The total number of ways of dividing n identical items (5 d's in our case) among r persons or objects (4 digt places in our case), each one of whom, can receive 0, 1, 2 or more items (from zero to 5 in our case) is \({n+r-1}_C_{r-1}\).

In our case we'll get: \({n+r-1}_C_{r-1}={5+4-1}_C_{4-1}={8}C3=\frac{8!}{5!3!}=56\)

Also see the image I found in the net about this question explaining the concept:
Attachment:
pTNfS-2e270de4ca223ec2741fa10b386c7bfe.jpg


Hi Bunuel,

Could you please clarify why we are taking 5 d's and 3 seprator (/). i am getting confusion here. we can take four separator also and get the result.

Thanks.
Senior Manager
Senior Manager
User avatar
Status: Math is psycho-logical
Joined: 07 Apr 2014
Posts: 421
Location: Netherlands
GMAT Date: 02-11-2015
WE: Psychology and Counseling (Other)
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 26 Dec 2014, 04:43
Hi,

If I may venture to propose the solution I used and you can tell me what I am missing.

I started by testing it from 0-10. There is one such number (5). From 11-20 there is one such number (14). This led me realize than from 0-99 there are 9 such numbers. So, this was the lengthy part of my thinking process (not lengthy at all).

From 0-99: 9 numbers.
From : 100-999: 9*2= 18 numbers
From 1000-9999: 9*3= 27 numbers
Adding them up: 9+18+27= 54.

This is close enough so I decided to choose 56 anyway, but since there are 2 numbers missing, could you tell me why and where?

Thank you,
Natalia
Manager
Manager
User avatar
Joined: 10 Jun 2015
Posts: 120
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 16 Jun 2015, 23:59
Bunuel wrote:
How many positive integers less than 10,000 are there in which the sum of the digits equals 5?

(A) 31
(B) 51
(C) 56
(D) 62
(E) 93

from 0 to 9, 5 ( 1 number)
from 10 to 99, we have 14,23,32,41,50 (5 numbers)
from 100 to 999, we have 104,113. 122,131, 140, 203,212,221, 230,302, 311,320,401,410,500 (15 numbers)
from 1000 to 9999, we have 1004,1040,1103,1112, 1121,1130,1202,1211,1220,1301,1310,1400, 2003,2012,2021,2030,2102,2111,2120,2201,2210,2300,3002.3011.3020,3101,3110,3200,4001,4010,4100,5000 (32 numbers)
So we have only 53 numbers.
Can anyone tell the numbers which I miss?
Intern
Intern
avatar
B
Joined: 02 Feb 2016
Posts: 5
Location: India
Concentration: Technology, General Management
WE: Analyst (Computer Software)
Premium Member
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 19 May 2016, 00:21
As it says integers less than 100,000,why only four digit numbers are considered ? Why not three digits,two digits and single digit integers considered?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47967
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 19 May 2016, 03:34
shaktirdas19 wrote:
As it says integers less than 100,000,why only four digit numbers are considered ? Why not three digits,two digits and single digit integers considered?


They are considered. If you read the whole thread you'll find the answer to your question.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

SVP
SVP
avatar
P
Joined: 12 Dec 2016
Posts: 1851
Location: United States
GMAT 1: 700 Q49 V33
GPA: 3.64
GMAT ToolKit User Premium Member
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 16 Apr 2017, 14:47
Bunuel wrote:
Ramsay wrote:
Sorry guys,

Could someone please explain the following:

"There are 8C3 ways to determine where to place the separators"

I'm not familiar with this shortcut/approach.

Ta


Consider this: we have 5 \(d\)'s and 3 separators \(|\), like: \(ddddd|||\). How many permutations (arrangements) of these symbols are possible? Total of 8 symbols (5+3=8), out of which 5 \(d\)'s and 3 \(|\)'s are identical, so \(\frac{8!}{5!3!}=56\).

With these permutations we'll get combinations like: \(|dd|d|dd\) this would be 3 digit number 212 OR \(|||ddddd\) this would be single digit number 5 (smallest number less than 10,000 in which sum of digits equals 5) OR \(ddddd|||\) this would be 4 digit number 5,000 (largest number less than 10,000 in which sum of digits equals 5)...

Basically this arrangements will give us all numbers less than 10,000 in which sum of the digits (sum of 5 d's=5) equals 5.

Hence the answer is \(\frac{8!}{5!3!}=56\).

Answer: C (56).

This can be done with direct formula as well:

The total number of ways of dividing n identical items (5 d's in our case) among r persons or objects (4 digt places in our case), each one of whom, can receive 0, 1, 2 or more items (from zero to 5 in our case) is \({n+r-1}_C_{r-1}\).

In our case we'll get: \({n+r-1}_C_{r-1}={5+4-1}_C_{4-1}={8}C3=\frac{8!}{5!3!}=56\)

Also see the image I found in the net about this question explaining the concept:
Attachment:
pTNfS-2e270de4ca223ec2741fa10b386c7bfe.jpg


hello, i complete understand the formula, but what i still do not understand is how why there are only 5 numbers? It should be 6 if o is included
Intern
Intern
avatar
S
Joined: 28 Jan 2017
Posts: 38
Location: India
GMAT 1: 750 Q50 V42
GPA: 3.29
Reviews Badge
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 21 Jul 2017, 10:10
X1 + X2 +X3 +X4 =5

The number of solutions of this equation for X1 X2, X3 and X4>=0 : n+r-1(C)r-1

Here r=4 and n=5
Hence solution: 8C3
Intern
Intern
User avatar
B
Joined: 30 Jun 2017
Posts: 18
Location: India
Concentration: Technology, General Management
WE: Consulting (Computer Software)
GMAT ToolKit User
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 06 Sep 2017, 22:41
walker wrote:
there is a shortcut. For the problem, 4 digits are equally important in 0000-9999 set and it is impossible to build a number using only one digit (like 11111) So, answer has to be divisible by 4. Only 56 works.

Image Posted from GMAT ToolKit


Hi walker,

Can you please explain this?
Intern
Intern
avatar
B
Joined: 12 Jul 2017
Posts: 31
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 04 Oct 2017, 05:30
Bunuel wrote:
zaarathelab wrote:
How many positive integers less than 10,000 are there in which the sum of the digits equals 5?

A) 31
B) 51
C) 56
D) 62
E) 93


Consider this: we have 5 \(d\)'s and 3 separators \(|\), like: \(ddddd|||\). How many permutations (arrangements) of these symbols are possible? Total of 8 symbols (5+3=8), out of which 5 \(d\)'s and 3 \(|\)'s are identical, so \(\frac{8!}{5!3!}=56\).

With these permutations we'll get combinations like: \(|dd|d|dd\) this would be 3 digit number 212 OR \(|||ddddd\) this would be single digit number 5 (smallest number less than 10,000 in which sum of digits equals 5) OR \(ddddd|||\) this would be 4 digit number 5,000 (largest number less than 10,000 in which sum of digits equals 5)...

Basically this arrangements will give us all numbers less than 10,000 in which sum of the digits (sum of 5 d's=5) equals 5.

Hence the answer is \(\frac{8!}{5!3!}=56\).

Answer: C (56).

This can be done with direct formula as well:

The total number of ways of dividing n identical items (5 d's in our case) among r persons or objects (4 digt places in our case), each one of whom, can receive 0, 1, 2 or more items (from zero to 5 in our case) is \({n+r-1}_C_{r-1}\).

In our case we'll get: \({n+r-1}_C_{r-1}={5+4-1}_C_{4-1}={8}C3=\frac{8!}{5!3!}=56\)


Hi Bunuel,
I just want to make sure that i understood the concept. Let us assume that the question stem ask for a sum of 4 instead of 5.
Will the answer be: XXXXIII i.e. 7!/(3!x4!)?

If the question asks for a sum of five for numbers below 20,000 will the answer be 9!/(5!x4!)?
if the question asks for a sum of four for numbers below 20,000 will the answer be : XXXX0IIII i.e. 9!/(4!x4!)?

Another thing, is there a formula if you want to distribute n different objects among k people? (i could count the case when n and k are small for example n=3 and k=2 but i was wondering if there was a general formula for that)
Intern
Intern
avatar
B
Joined: 17 Jan 2018
Posts: 43
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 16 Apr 2018, 08:32
I don't like the sticks method. It is not intuitive at all. And I will no way even think of that in the exam. For me, the usual way is better.

Sum of digits --> 5 and Less than 10,000.

(0,0,0,5) - 4!/3! - 4
(0,0,1,4) - 4!/2! - 12
(0,0,2,3) - 4!/2! - 12
(0,1,1,3) - 4!/2! - 12
(0,1,2,2) - 4!/2! - 12
(1,1,1,2) - 4!/3! - 4

Add them all --> 56

Isnt this simple enough? And can be extrapolated easily to any question of this sort no?

Bunuel wrote:
How many positive integers less than 10,000 are there in which the sum of the digits equals 5?

(A) 31
(B) 51
(C) 56
(D) 62
(E) 93
Intern
Intern
User avatar
B
Joined: 06 Mar 2017
Posts: 49
Location: India
Schools: ISB '20, NUS '20
GMAT 1: 620 Q49 V25
GPA: 3.9
Re: How many positive integers less than 10,000 are there in  [#permalink]

Show Tags

New post 21 May 2018, 00:36
Bunuel wrote:
zaarathelab wrote:
How many positive integers less than 10,000 are there in which the sum of the digits equals 5?

A) 31
B) 51
C) 56
D) 62
E) 93


Consider this: we have 5 \(d\)'s and 3 separators \(|\), like: \(ddddd|||\). How many permutations (arrangements) of these symbols are possible? Total of 8 symbols (5+3=8), out of which 5 \(d\)'s and 3 \(|\)'s are identical, so \(\frac{8!}{5!3!}=56\).

With these permutations we'll get combinations like: \(|dd|d|dd\) this would be 3 digit number 212 OR \(|||ddddd\) this would be single digit number 5 (smallest number less than 10,000 in which sum of digits equals 5) OR \(ddddd|||\) this would be 4 digit number 5,000 (largest number less than 10,000 in which sum of digits equals 5)...

Basically this arrangements will give us all numbers less than 10,000 in which sum of the digits (sum of 5 d's=5) equals 5.

Hence the answer is \(\frac{8!}{5!3!}=56\).

Answer: C (56).

This can be done with direct formula as well:

The total number of ways of dividing n identical items (5 d's in our case) among r persons or objects (4 digt places in our case), each one of whom, can receive 0, 1, 2 or more items (from zero to 5 in our case) is \({n+r-1}_C_{r-1}\).

In our case we'll get: \({n+r-1}_C_{r-1}={5+4-1}_C_{4-1}={8}C3=\frac{8!}{5!3!}=56\)


Bunuel, This stuff bounced over my head. What is this Digits and Separators concept? Kindly enlighten.
How did u get to 5d and 3s, can it be 7d or 8d and 9s or something like that...?
Re: How many positive integers less than 10,000 are there in &nbs [#permalink] 21 May 2018, 00:36

Go to page   Previous    1   2   3   [ 59 posts ] 

Display posts from previous: Sort by

How many positive integers less than 10,000 are there in

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.