Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 50007

Re: perms
[#permalink]
Show Tags
09 Jul 2013, 01:16
akijuneja wrote: Bunuel wrote: BarneyStinson wrote: How many subordinates does Marcia Have? If (1) there are between 200 and 500 lists she could make consisting of the names of at least 2 of her subordinates. (2) there are 28 ways that she could decide which 2 subordinates she will recommend promoting.
This is a very very interesting problem and the best explanation I could come with is this 
Imagine you have nine open slots and nine digits from 1 to 9, repetition is allowed and you can fill those slots with the digits, it gives you 9^9 entire combinations.
Similarly, you have n open slots and n candidates, each candidate can either fill the slot or not. So that gives 2 possibilities for each slot. For n slots, 2^n. This is practically, all the possible combinations of filling in those slots.
Now given in stmt 1 is that  all such possible combinations range between 200 and 500. So 200 < 2^n < 500. Therefore, n = 8. Little correction: For (2) we have \(\{s_1,s_2,s_3,...s_n\}\). Each subordinate \((s_1,s_2,s_3,...s_n)\) has TWO options: either to be included in the list or not. Hence total # of lists  \(2^n\), correct. But this number will include \(n\) lists with 1 subordinate as well \(1\) empty list. As the lists should contain at least 2 subordinates, then you should subtract all the lists containing only 1 subordinate and all the lists containing 0 subordinate. Lists with 1 subordinate  n: \(\{s_1,0,0,0...0\}\), \(\{0,s_2,0,0,...0\}\), \(\{0,0,s_3,0,...0\}\), ... \(\{0,0,0...s_n\}\). List with 0 subordinate  1: \(\{0,0,0,...0\}\) So we'll get \(200<2^nn1<500\), > \(n=8\). Sufficient. For (1): \(C^2_n=28\) > \(\frac{n(n1)}{2!}=28\) > \(n(n1)=56\) > \(n=8\). Sufficient. Answer: D. Hi I wanted to know how can the list be composed of zero subordinate and if there are other candidates as well who are not subordinate then answer will change. Please clarify Posted from my mobile device 2^n is the number of lists including lists with 1 subordinate and an empty set (list with 0 subordinates is an empty set, which simply means that Marcia does not have any subordinate). As for your other question, unfortunately I'm not sure I understand it.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 05 Nov 2012
Posts: 149

Re: perms
[#permalink]
Show Tags
26 Dec 2013, 21:40
\(200<2^nn1<500\) I did get this equation but how do you solve it guys? GMAT may not be testing it but I am interested to know the process of solving this equation. This one is easy by plugging, but what if the equation is \(289700<2^nn1<526100\)



Math Expert
Joined: 02 Sep 2009
Posts: 50007

Re: perms
[#permalink]
Show Tags
27 Dec 2013, 03:43



Intern
Joined: 10 Jan 2014
Posts: 22

Re: perms
[#permalink]
Show Tags
16 Feb 2014, 13:43
Bunuel wrote: BarneyStinson wrote: How many subordinates does Marcia Have?
(1) there are between 200 and 500 lists she could make consisting of the names of at least 2 of her subordinates. (2) there are 28 ways that she could decide which 2 subordinates she will recommend promoting.
This is a very very interesting problem and the best explanation I could come with is this 
Imagine you have nine open slots and nine digits from 1 to 9, repetition is allowed and you can fill those slots with the digits, it gives you 9^9 entire combinations.
Similarly, you have n open slots and n candidates, each candidate can either fill the slot or not. So that gives 2 possibilities for each slot. For n slots, 2^n. This is practically, all the possible combinations of filling in those slots.
Now given in stmt 1 is that  all such possible combinations range between 200 and 500. So 200 < 2^n < 500. Therefore, n = 8. Little correction: For (2) we have \(\{s_1,s_2,s_3,...s_n\}\). Each subordinate \((s_1,s_2,s_3,...s_n)\) has TWO options: either to be included in the list or not. Hence total # of lists  \(2^n\), correct. But this number will include \(n\) lists with 1 subordinate as well \(1\) empty list. As the lists should contain at least 2 subordinates, then you should subtract all the lists containing only 1 subordinate and all the lists containing 0 subordinate. Lists with 1 subordinate  n: \(\{s_1,0,0,0...0\}\), \(\{0,s_2,0,0,...0\}\), \(\{0,0,s_3,0,...0\}\), ... \(\{0,0,0...s_n\}\). List with 0 subordinate  1: \(\{0,0,0,...0\}\) So we'll get \(200<2^nn1<500\), > \(n=8\). Sufficient. For (1): \(C^2_n=28\) > \(\frac{n(n1)}{2!}=28\) > \(n(n1)=56\) > \(n=8\). Sufficient. Answer: D. I'm sorry for bringing this old post up again but I'm afraid I don't quite understand your solution. For statement 1, why did you use 2^n here and not a factorial approach? I just don't understand the logic behind it. For example, if Marcia had 4 different subordinates  e.g Anna, Bea, Christian, Doug (ABCD)  then there would be 4!/(2!2!) ways to create a list with two employee names on it. if the number of different twoname lists is to be between 200 and 500, then Marcia could have either 21 employees (21!/(2!19!)=210) or 32 employees (32!/2!30!=496). Since we do not know how many different employee names she puts on those lists, we can't really tell how many different subordinates she has. I know I made a mistake somewhere, but I don't know where or why my approach/ logic is wrong. Could you please enlighten me?



Math Expert
Joined: 02 Sep 2009
Posts: 50007

Re: perms
[#permalink]
Show Tags
17 Feb 2014, 07:43
damamikus wrote: Bunuel wrote: BarneyStinson wrote: How many subordinates does Marcia Have?
(1) there are between 200 and 500 lists she could make consisting of the names of at least 2 of her subordinates. (2) there are 28 ways that she could decide which 2 subordinates she will recommend promoting.
This is a very very interesting problem and the best explanation I could come with is this 
Imagine you have nine open slots and nine digits from 1 to 9, repetition is allowed and you can fill those slots with the digits, it gives you 9^9 entire combinations.
Similarly, you have n open slots and n candidates, each candidate can either fill the slot or not. So that gives 2 possibilities for each slot. For n slots, 2^n. This is practically, all the possible combinations of filling in those slots.
Now given in stmt 1 is that  all such possible combinations range between 200 and 500. So 200 < 2^n < 500. Therefore, n = 8. Little correction: For (2) we have \(\{s_1,s_2,s_3,...s_n\}\). Each subordinate \((s_1,s_2,s_3,...s_n)\) has TWO options: either to be included in the list or not. Hence total # of lists  \(2^n\), correct. But this number will include \(n\) lists with 1 subordinate as well \(1\) empty list. As the lists should contain at least 2 subordinates, then you should subtract all the lists containing only 1 subordinate and all the lists containing 0 subordinate. Lists with 1 subordinate  n: \(\{s_1,0,0,0...0\}\), \(\{0,s_2,0,0,...0\}\), \(\{0,0,s_3,0,...0\}\), ... \(\{0,0,0...s_n\}\). List with 0 subordinate  1: \(\{0,0,0,...0\}\) So we'll get \(200<2^nn1<500\), > \(n=8\). Sufficient. For (1): \(C^2_n=28\) > \(\frac{n(n1)}{2!}=28\) > \(n(n1)=56\) > \(n=8\). Sufficient. Answer: D. I'm sorry for bringing this old post up again but I'm afraid I don't quite understand your solution. For statement 1, why did you use 2^n here and not a factorial approach? I just don't understand the logic behind it. For example, if Marcia had 4 different subordinates  e.g Anna, Bea, Christian, Doug (ABCD)  then there would be 4!/(2!2!) ways to create a list with two employee names on it. if the number of different twoname lists is to be between 200 and 500, then Marcia could have either 21 employees (21!/(2!19!)=210) or 32 employees (32!/2!30!=496). Since we do not know how many different employee names she puts on those lists, we can't really tell how many different subordinates she has. I know I made a mistake somewhere, but I don't know where or why my approach/ logic is wrong. Could you please enlighten me? The lists should contain at least 2 subordinates, not exactly 2.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 20 Oct 2012
Posts: 7
Location: United States
Twilight: Sparkle
Concentration: Accounting, Economics
GPA: 3.85

Re: How many subordinates does Marcia have?
[#permalink]
Show Tags
30 Apr 2014, 07:55
Hi Guys, plz , I do not understand any of the answers , can anyone give a more simple explanation . Thank You in advance.



Math Expert
Joined: 02 Sep 2009
Posts: 50007

Re: How many subordinates does Marcia have?
[#permalink]
Show Tags
30 Apr 2014, 07:57



Manager
Joined: 20 Oct 2013
Posts: 54

Re: perms
[#permalink]
Show Tags
12 May 2014, 05:52
Bunuel wrote: For (2) we have \(\{s_1,s_2,s_3,...s_n\}\). Each subordinate \((s_1,s_2,s_3,...s_n)\) has TWO options: either to be included in the list or not. Hence total # of lists  \(2^n\), correct. But this number will include \(n\) lists with 1 subordinate as well \(1\) empty list. As the lists should contain at least 2 subordinates, then you should subtract all the lists containing only 1 subordinate and all the lists containing 0 subordinate.
Lists with 1 subordinate  n: \(\{s_1,0,0,0...0\}\), \(\{0,s_2,0,0,...0\}\), \(\{0,0,s_3,0,...0\}\), ... \(\{0,0,0...s_n\}\). List with 0 subordinate  1: \(\{0,0,0,...0\}\)
So we'll get \(200<2^nn1<500\), > \(n=8\). Sufficient.
For (1): \(C^2_n=28\) > \(\frac{n(n1)}{2!}=28\) > \(n(n1)=56\) > \(n=8\). Sufficient.
Answer: D. Dear Bunnel How can you even understand what the qs is saying... i couldnt understand what statement 1 was saying? what list are they talking about?
_________________
Hope to clear it this time!! GMAT 1: 540 Preparing again



Manager
Joined: 28 Apr 2014
Posts: 226

How many subordinates does Marcia have?
[#permalink]
Show Tags
06 Jul 2014, 23:49
BarneyStinson wrote: This is a very very interesting problem and the best explanation I could come with is this 
Imagine you have nine open slots and nine digits from 1 to 9, repetition is allowed and you can fill those slots with the digits, it gives you 9^9 entire combinations.
Similarly, you have n open slots and n candidates, each candidate can either fill the slot or not. So that gives 2 possibilities for each slot. For n slots, 2^n. This is practically, all the possible combinations of filling in those slots.
Now given in stmt 1 is that  all such possible combinations range between 200 and 500. So 200 < 2^n < 500. Therefore, n = 8. Just out of interest , how will the above understanding change if we have say 'a' open slots and 'b' candidates ( b>a) ?. Will it be bCa (2^a) ? Bunuel any pointers for more information on this concept will be much appreciated



Intern
Status: Preparing for GMAT
Joined: 10 Dec 2013
Posts: 15
Location: India
Concentration: Marketing, Leadership
WE: Other (Entertainment and Sports)

Re: How many subordinates does Marcia have?
[#permalink]
Show Tags
26 Jul 2014, 13:14
From 1, how did we get n(n1)/2! ?? Shouldn't it be n!/(n2)!*2 ?? Can someone please explain!



Math Expert
Joined: 02 Sep 2009
Posts: 50007

Re: How many subordinates does Marcia have?
[#permalink]
Show Tags
26 Jul 2014, 13:19




Re: How many subordinates does Marcia have? &nbs
[#permalink]
26 Jul 2014, 13:19



Go to page
Previous
1 2
[ 31 posts ]



