johnwesley wrote:

How many ways can the letters in the word COMMON be arranged?

A. 6

B. 30

C. 90

D. 120

E. 180

This is a permutation with indistinguishable events - repeated items. The number of different permutations of N objects, where there are N1 indistinguishable objects of style 1, N2 indistinguishable objects of style 2, ..., and Nk indistinguishable objects of style k, is = N!/(N1!*N2!* ... * Nk!). In this case, N=6; N1=2, and N2=2. This gives the formula: 6!/(2!*2!)=180

THEORY FOR SUCH KIND OF PERMUTATION QUESTIONS:Permutations of \(n\) things of which \(P_1\) are alike of one kind, \(P_2\) are alike of second kind, \(P_3\) are alike of third kind ... \(P_r\) are alike of \(r_{th}\) kind such that: \(P_1+P_2+P_3+..+P_r=n\) is:

\(\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}\).

For example number of permutation of the letters of the word "gmatclub" is \(8!\) as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \(\frac{6!}{2!2!}\), as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \(\frac{9!}{4!3!2!}\).

BACK TO THE ORIGINAL QUESTION:How many ways can the letters in the word COMMON be arranged?A. 6

B. 30

C. 90

D. 120

E. 180

According to the above the # of permutations of 6 letters COMMON out of which 2 O's and 2 M's are identical is \(\frac{6!}{2!*2!}=180\).

Answer: E.

Hope it's clear.

_________________

New to the Math Forum?

Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:

GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:

PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.

What are GMAT Club Tests?

Extra-hard Quant Tests with Brilliant Analytics