GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 06 Jul 2020, 12:55 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =

Author Message
TAGS:

### Hide Tags

Director  B
Status: I don't stop when I'm Tired,I stop when I'm done
Joined: 11 May 2014
Posts: 515
GPA: 2.81
If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

5
1
Top Contributor
26 00:00

Difficulty:   15% (low)

Question Stats: 77% (01:04) correct 23% (00:55) wrong based on 1284 sessions

### HideShow timer Statistics

If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12

Attachment: 2018.OG.05.072.q.png [ 4.16 KiB | Viewed 18471 times ]

Originally posted by AbdurRakib on 17 Jun 2017, 08:10.
Last edited by Bunuel on 12 Jul 2017, 09:59, edited 2 times in total.
Renamed the topic and edited the question.
GMAT Club Legend  V
Joined: 11 Sep 2015
Posts: 4955
GMAT 1: 770 Q49 V46
If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

5
Top Contributor
2
AbdurRakib wrote:
If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12

Attachment:
2018.OG.05.072.q.png

To solve this question, we need to recognize that there's a 1/3 + 1/4 + 1/5 + 1/6 "hiding" in 1/9 + 1/12 + 1/15 + 1/18
We can reveal this "secret" by factoring 1/3 out of 1/9 + 1/12 + 1/15 + 1/18
We get: 1/9 + 1/12 + 1/15 + 1/18 = (1/3)(1/3 + 1/4 + 1/5 + 1/6)

So.....
Given: 1/3 + 1/4 + 1/5 + 1/6 = r(1/9 + 1/12 + 1/15 + 1/18)
Factor right side to get: 1/3 + 1/4 + 1/5 + 1/6 = (r)(1/3)(1/3 + 1/4 + 1/5 + 1/6)
Divide (1/3 + 1/4 + 1/5 + 1/6) from both sides to get: 1 = (r)(1/3)
Multiply both sides by 3 to get: 3 = r
_________________

Originally posted by BrentGMATPrepNow on 28 Jun 2017, 06:05.
Last edited by BrentGMATPrepNow on 01 Jun 2020, 08:32, edited 1 time in total.
Director  V
Joined: 04 Dec 2015
Posts: 723
Location: India
Concentration: Technology, Strategy
WE: Information Technology (Consulting)
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

25
2
AbdurRakib wrote:
Attachment:
2018.OG.05.072.q.png
A. $$\frac{1}{3}$$
B. $$\frac{4}{3}$$
C. 3
D. 4
E. 12

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r(\frac{1}{9}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18})$$

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r*\frac{1}{3}(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})$$

$$r*\frac{1}{3} =1$$

$$r = 3.$$ Answer (C)..

_________________
Please Press "+1 Kudos" to appreciate. Originally posted by sashiim20 on 17 Jun 2017, 08:16.
Last edited by sashiim20 on 17 Jun 2017, 11:30, edited 1 time in total.
##### General Discussion
Senior SC Moderator V
Joined: 22 May 2016
Posts: 3940
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

3
sashiim20 wrote:
AbdurRakib wrote:
Attachment:
2018.OG.05.072.q.png
A. $$\frac{1}{3}$$
B. $$\frac{4}{3}$$
C. 3
D. 4
E. 12

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r(\frac{1}{9}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18})$$

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r*\frac{1}{3}(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})$$

$$r*\frac{1}{3} =0$$

$$r = 3.$$ Answer (C)..

_________________
Please Press "+1 Kudos" to appreciate. sashiim20 - Nice! But I think you have a typo.

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r*\frac{1}{3}(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})$$ - if you divide LHS by last factor on RHS, I think you get 1.

So in highlighted part, $$r*\frac{1}{3} =0$$, I think RHS should be 1, not 0. Otherwise you'll get

$$r*\frac{1}{3} * 3 =0 * 3$$

$$r = 0$$
_________________
Visit SC Butler, here! Get two SC questions to practice, whose links you can find by date.

Our lives begin to end the day we become silent about things that matter. -- Dr. Martin Luther King, Jr.

BLACK LIVES MATTER.

Originally posted by generis on 17 Jun 2017, 11:26.
Last edited by generis on 17 Jun 2017, 11:35, edited 1 time in total.
Director  V
Joined: 04 Dec 2015
Posts: 723
Location: India
Concentration: Technology, Strategy
WE: Information Technology (Consulting)
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

Silly typo mistake. Thank you ... Updated the post. Board of Directors D
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 5012
Location: India
GPA: 3.5
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

1
AbdurRakib wrote:
If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12
Attachment:
2018.OG.05.072.q.png

$$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$

Or, $$\frac{20+15+12+10}{60} = \frac{r(20+15+12+10)}{180}$$

Or, $$20+15+12+10 = \frac{r(20+15+12+10)}{3}$$

Or, $$57*3 = r*57$$

So, $$r = 3$$

_________________
Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )
Target Test Prep Representative V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 11042
Location: United States (CA)
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

AbdurRakib wrote:
If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12

We can simplify the given expression by multiplying by 180 and we have:

60 + 45 + 36 + 30 = 20r + 15r + 12r + 10r

171 = 57r

r = 3

Alternate Solution:

We should note that each fraction on the left hand side is 3 times the corresponding fraction on the right.

For instance 1/3 is 3 times 1/9, 1/4 is 3 times 1/12, etc.

Thus, r MUST be 3.

_________________

# Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

Intern  B
Joined: 18 Jun 2017
Posts: 7
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

why cannot we multiply the right side simply by 3 but 1/3?
Sorry, cannot understand this moment...
Manager  S
Joined: 05 Oct 2017
Posts: 60
GMAT 1: 560 Q44 V23 Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

1
AbdurRakib wrote:
If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12

Attachment:
2018.OG.05.072.q.png

$$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$

$$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{3*3} + \frac{1}{3*4} + \frac{1}{3*5} + \frac{1}{3*6})$$

$$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = \frac{r}{3}(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6})$$

$$1=\frac{r}{3}$$

$$r=3$$

_________________

It’s not that I’m so smart, it’s just that I stay with problems longer. -- Albert Einstein
VP  V
Joined: 18 Dec 2017
Posts: 1406
Location: United States (KS)
GMAT 1: 600 Q46 V27 Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

GMATPrepNow wrote:
AbdurRakib wrote:
If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12

Attachment:
2018.OG.05.072.q.png

To solve this question, we need to recognize that there's a 1/3 + 1/4 + 1/5 + 1/6 "hiding" in 1/9 + 1/12 + 1/15 + 1/18
We can reveal this "secret" by factoring 1/3 out of 1/9 + 1/12 + 1/15 + 1/18
We get: 1/9 + 1/12 + 1/15 + 1/18 = (1/3)(1/3 + 1/4 + 1/5 + 1/6)

So.....
Given: 1/3 + 1/4 + 1/5 + 1/6 = r(1/9 + 1/12 + 1/15 + 1/18)
Factor right side to get: 1/3 + 1/4 + 1/5 + 1/6 = (r)(1/3)(1/3 + 1/4 + 1/5 + 1/6)
Divide (1/3 + 1/4 + 1/5 + 1/6) from both sides to get: 1 = (r)(1/3)
Multiply both sides by 3 to get: 3 = r

RELATED VIDEO

I kept looking what is that I cannot see. I could not spot it. I solved it manually in 2 minutes and got the right answer and then I was able to see. Hahaha!
_________________
The Moment You Think About Giving Up, Think Of The Reason Why You Held On So Long

Why You Don’t Deserve A 700 On Your GMAT

Learn from the Legend himself: All GMAT Ninja LIVE YouTube videos by topic
You are missing on great learning if you don't know what this is: Project SC Butler
Senior Manager  G
Joined: 10 Aug 2018
Posts: 280
Location: India
Concentration: Strategy, Operations
WE: Operations (Energy and Utilities)
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

take 1/3 common from the equation after =
cross multiply.
R=3

This has to be the fastest way
_________________
On the way to get into the B-school and I will not leave it until I win. WHATEVER IT TAKES.

" I CAN AND I WILL"
CEO  V
Joined: 03 Jun 2019
Posts: 3183
Location: India
GMAT 1: 690 Q50 V34 WE: Engineering (Transportation)
Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  [#permalink]

### Show Tags

AbdurRakib wrote:
If $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$, then r =

A. $$\frac{1}{3}$$

B. $$\frac{4}{3}$$

C. 3

D. 4

E. 12

Attachment:
2018.OG.05.072.q.png

Given: $$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$

$$(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = 3(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})$$

r = 3

IMO C
_________________
Kinshook Chaturvedi
Email: kinshook.chaturvedi@gmail.com Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =   [#permalink] 13 Sep 2019, 22:30

# If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =  