GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 12 Nov 2019, 02:01

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If 2^4x = 3,600, what is the value of (2^1-x)^2 ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Intern
Intern
User avatar
Joined: 24 May 2014
Posts: 13
Location: Brazil
If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 25 Jun 2014, 19:24
4
100
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

69% (02:27) correct 31% (02:28) wrong based on 743 sessions

HideShow timer Statistics

If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1
Most Helpful Community Reply
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1732
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 10 Jul 2014, 03:35
43
14
\(2^{4x} = 3600\)

\((2^{2x})^2 = 60^2\)

\(2^{2x} = 60\) .............. (1)

\((2^{1-x})^2 = \frac{2^2}{2^{2x}}\)

\(= \frac{4}{60}\).............. (From 1)

\(= \frac{1}{15}\)

Answer = B
_________________
Kindly press "+1 Kudos" to appreciate :)
General Discussion
Director
Director
User avatar
Joined: 25 Apr 2012
Posts: 654
Location: India
GPA: 3.21
WE: Business Development (Other)
Reviews Badge
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 25 Jun 2014, 21:00
4
3
Reni wrote:
If 2^4x = 3,600, what is the value of (2^1-x)^2 ?

(A)-1/15
(B) 1/15
(C)3/10
(D)-3/10
(E)1



Given 2^4x=1600
We need to find value of 2 ^(1-x)^2-------> Simplify this term

\((\frac{2}{2^x})^2\)

So we need to find value of \(\frac{4}{2^{2x}}\)

2^4x=3600. Taking a square root we get

2^2x=60

So we get 4/60 or 1/15
Ans is B

Similar question or practice:

given-2-4x-1600-what-is-the-value-of-154486.html#p1236720
if-4-4x-1600-what-is-the-value-of-4-x-161823.html
_________________

“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”
Intern
Intern
avatar
Joined: 26 Apr 2016
Posts: 8
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 08 Jul 2016, 11:57
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \(2^{(1-x)^2}\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


Is it \(2^{(1-x)^2}\) as written in the original post? Or (2^(1-x))^2 as in the answer solutions? The question stem multiplies to be 2^(x^2 - 2x + 1).
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58964
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 08 Jul 2016, 12:43
Current Student
User avatar
B
Status: DONE!
Joined: 05 Sep 2016
Posts: 355
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 04 Nov 2016, 20:46
1
Can someone please explain why we can't do the following:

Break 3600 to 2^4 x (3^2) x (5^2) --> so x=1

making the answer 1.

Why is this not the correct way to approach?

Thanks in advance :)
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58964
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 05 Nov 2016, 02:08
lawiniecke wrote:
Can someone please explain why we can't do the following:

Break 3600 to 2^4 x (3^2) x (5^2) --> so x=1

making the answer 1.

Why is this not the correct way to approach?

Thanks in advance :)


\(2^{4x} = 2^4*3^2*5^2\). If x=1, then you'd get that \(1 = 3^2*5^2\), which is wrong --> \(x \neq 1\). In fact from \(2^{4x} = 3600\) it follows that x is some irrational number (approximately 2.9534...), not an integer.
_________________
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2812
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 22 Nov 2017, 12:27
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


Let’s first simplify the expression we want to evaluate. We see that [2^(1-x)]^2 can be simplified as (2 * 2^-x)^2 = 2^2 * 2^-2x = (2^2)/(2^2x)

Thus, if we can determine 2^2x, then we have an answer.

Taking the square root of both sides of the given equation, which is 2^4x = 3600 we have 2^2x = 60; thus:

(2^2)/(2^2x) = 4/60 = 1/15

Answer: B
_________________

Jeffrey Miller

Head of GMAT Instruction

Jeff@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Director
Director
User avatar
S
Joined: 17 Dec 2012
Posts: 623
Location: India
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 23 Jan 2018, 18:15
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1

2^(4x)= 3600 => x is just less than 3
=>2^((1-x))^2 = approx (2^(1-3))^2= approx 1/(2^4)
Hence B.
_________________
Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravnatestprep.com

Holistic and Systematic Approach
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1229
If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 06 May 2018, 03:41
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


pushpitkc hello there, :-) can you please tell what am i doing wrong in my solution and why i am doing it wrong :)

so we have \(2^{4x} = 3,600\) (the first thing that came to my mind is that i need to bring both sides to the same base) so here is what i did

\(2^{4x} = 36*10^2\) (now break down 36 into primes which is \(3^2*2^2\) see below in next step)

\(2^{4x} = 3^2*2^2*10^2\) ( here since i want to have the same bases of 2 i do following) turn \(3^2\) into \(2^3\) and \(10^2\) into \(2^{10}\)(see below)

\(2^{4x} = 2^2*2^2*2^{10}\)

\(2^{4x} = 2^{14}\)[ now equate bases :)

\(4x = 14\)

x= \(\frac{14}{4}\) --> \(\frac{7}{2}\) now what :?


question in conclusion: shoudldnt we always equate bases in similrar question :) as i did in the above solution:)

thank you :)
Manager
Manager
User avatar
S
Joined: 22 Jan 2014
Posts: 169
WE: Project Management (Computer Hardware)
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 06 May 2018, 04:36
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


2^4x = 3600
taking log both sides
4x log 2 = log 2^4 + log 3^2 + log 5^2
or log 3^2 + log 5^2 = 4 log 2 (x-1)
or log 3 + log 5 = 2 log 2 (x-1)
=> (2^(1-x))^2 = 1/15
_________________
Illegitimi non carborundum.
Senior PS Moderator
User avatar
V
Joined: 26 Feb 2016
Posts: 3312
Location: India
GPA: 3.12
If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 06 May 2018, 05:13
1
dave13 wrote:
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


pushpitkc hello there, :-) can you please tell what am i doing wrong in my solution and why i am doing it wrong :)

so we have \(2^{4x} = 3,600\) (the first thing that came to my mind is that i need to bring both sides to the same base) so here is what i did

\(2^{4x} = 36*10^2\) (now break down 36 into primes which is \(3^2*2^2\) see below in next step)

\(2^{4x} = 3^2*2^2*10^2\) ( here since i want to have the same bases of 2 i do following) turn \(3^2\) into \(2^3\) and \(10^2\) into \(2^{10}\)(see below)

\(2^{4x} = 2^2*2^2*2^{10}\)

\(2^{4x} = 2^{14}\)[ now equate bases :)

\(4x = 14\)

x= \(\frac{14}{4}\) --> \(\frac{7}{2}\) now what :?


question in conclusion: shoudldnt we always equate bases in similrar question :) as i did in the above solution:)

thank you :)



Hi dave13

You equate bases whenever it is possible. In cases like these, where
bases can't be equated you will have another options to solve the problem

The reason what you have done is wrong is because
\(2^10 = 1024\), whereas \(10^2 = 100\)
\(2^3 = 8\), whereas \(3^2 = 9\)
How can the expressions where you made these changes be equal??

Since we have been asked to find the value of \(2^{(1-x)^2}\)
It can be further simplified as \(2^{2 - 2x}\) which is nothing but \(\frac{2^2}{2^{2x}}\)

Hope this helps you!
_________________
You've got what it takes, but it will take everything you've got
Manager
Manager
User avatar
P
Joined: 07 Apr 2018
Posts: 101
Reviews Badge
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 06 May 2018, 05:58
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


To find: (2^(1-x))^2
=> 2^(2-2x) = 4/ 2^2x ........................................(1)

Given: 2^4x= 3600 = 2^4 * 3^2 * 5^2
taking square root, we get
2^2x= 2^2 * 3 * 5..................................................(2)

Putting the value of 2^2x from eqn(2) to eqn(1), we get

4/2^2x = 4/(4 * 3 * 5) = 1/15

Correct Answer- B
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 12 Sep 2015
Posts: 4055
Location: Canada
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 12 Oct 2018, 06:48
1
Top Contributor
Reni wrote:
If \(2^{4x} = 3,600\), what is the value of \((2^{(1-x)})^2\) ?

(A) -1/15
(B) 1/15
(C) 3/10
(D) -3/10
(E) 1


GIVEN: 2^(4x) = 3,600
Raise both sides to the power of 1/2 to get: [2^(4x)]^(1/2) = 3,600^(1/2)
Simplify: 2^(2x) = 60

We want to find the value of: [2^(1−x)]²
To simplify, apply Power of Power law to get: 2^(2 - 2x)
This is equal to: (2^2)/[2^(2x)]
Replace 2^(2x) with 60 to get: (2^2)/60 = 4/60 = 1/15

Answer: B

RELATED VIDEO FROM OUR COURSE

_________________
Test confidently with gmatprepnow.com
Image
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13562
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?  [#permalink]

Show Tags

New post 15 Oct 2019, 17:09
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: If 2^4x = 3,600, what is the value of (2^1-x)^2 ?   [#permalink] 15 Oct 2019, 17:09
Display posts from previous: Sort by

If 2^4x = 3,600, what is the value of (2^1-x)^2 ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne