Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Given: \(-2x>3y\). Question: is \(x<0\)? (Note here that if \(y\) is any positive number then we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

Re: If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0 [#permalink]

Show Tags

29 Jun 2013, 06:45

1

This post received KUDOS

fozzzy wrote:

In statement 2 we can write the equation 2x+3y+2y = 20 we know 2x+3y is positive and we get y = 10 hence same as statement 1 is this approach correct?

If -2x > 3y, is x negative?

(1) y > 0 -2x > +ve number, hence x is negative. Sufficient

(2) 2x + 5y - 20 = 0 The area defined by -2x > 3y is the area under the red line. If we know that \(2x + 5y - 20 = 0\) (blue line) (given the initial condition) we can say that x is negative because they intersect when x is negative. (refer to the image) Sufficient

Your approach is correct. We know that 2x+3y is negative (typo I think), so \(2x + 3y +2y= 20\) can be seen as \(-ve +2y=20\) so y is positive for sure as \(2y=20+(+ve)\)

Attachments

Immagine.JPG [ 23.99 KiB | Viewed 4124 times ]

_________________

It is beyond a doubt that all our knowledge that begins with experience.

Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

If -2x > 3y, is x negative?

(1) y > 0 (2) 2x + 5y - 20 = 0

In the original condition, there are 2 variables(x,y) and 1 equation(-2x>3y), which should match with the number of equations. So you need 1 equation. For 1) 1 equation, for 2) 1 equation, which is likely to make D the answer. For 1), when y>0, it becomes 3y>2y. That is, -2x>3y>2y, -2x>2y. -x>y --> -x>y>0, -x>0 therefore x<0, which is yes and sufficient. For 2), substitute y=(-2/5)x+4 to the equation. It becomes -2x>3(-2/5)x+4 and multiply 5 to both equations. Divide -10x>-6x+20, -4x>20 with -4 and x<-5<0 is also yes and sufficient. Therefore, the answer is D.

-> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices..

(1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

Statement 1: y > 0 In other words, y is POSITIVE This means that 3y is POSITIVE It is given that -2x > 3y Since 3y is POSITIVE, we can write: -2x > SOME POSITIVE # If -2x is greater than SOME POSITIVE #, we know that -2x is POSITIVE If -2x is POSITIVE, then x must be negative Since we can answer the target question with certainty, statement 1 is SUFFICIENT

Statement 2: 2x + 5y - 20 = 0 IMPORTANT: It is given that -2x > 3y So, let's take 2x + 5y - 20 = 0 and rewrite it as 5y - 20 = -2x [I have isolated -2x, just like we have in the GIVEN information] Now, we'll take -2x > 3y, and replace -2x with 5y - 20 to get: 5y - 20 > 3y Subtract 3y from both sides: 2y - 20 > 0 Add 20 to both sides: 2y > 20 Solve: y > 10 This means that y is POSITIVE We already saw in statement 1, that when y is positive, x must be negative Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Given: \(-2x>3y\). Q: is \(x<0\)? (Note here that if \(y\) is any positive number than we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

Given: \(-2x>3y\). Q: is \(x<0\)? (Note here that if \(y\) is any positive number then we would have \(-2x>positive\), and in order that to be true \(x\) must be some negative number).

(2) \(2x+5y-20=0\) --> \(2x=20-5y\) --> \(-20+5y>3y\) --> \(y>10\). Same as above: \(x<0\). Sufficient.

Answer: D.

Can you please explain stmt. 2 again. Unable to understand the following stmt---

\(-20+5y>3y\)

(2) \(2x+5y-20=0\) --> \(2x=20-5y\) --> given \(-2x>3y\), substitute \(2x\) --> \(-(20-5y)>3y\) --> \(-20+5y>3y\) --> \(y>10\) --> \(y=positive\), as discussed above if \(y\) is any positive number then \(x\) must be some negative number: \(x<0\). Sufficient.

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

-2x > 3y 2x + 3y<0 -----(1)

Statement 1 If y>0 & 2x + 3y<0

Then x must be Negative. Sufficient

Statement 2 2x + 5y - 20 = 0 2x + 5y = 20 (2x + 3y) + 2y=20 We can write 2y + some negative no = 20 2y = 20 + some Positiveno y = 10 + some Positiveno/2 This mean that y>10

2x + 3y<0 2x< -3y x < -1.5 (Positive no) because y is positive

Then x must be Negative. Sufficient

Answer D
_________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS. Kudos always maximizes GMATCLUB worth-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices.. (1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices.. (1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

If -2x > 3y, is x negative? (1) y > 0 (2) 2x + 5y - 20 = 0

Hi, -2x > 3y... (a)If y<0, x can be both +ive and -ive.. (b)if y>0, x will have to be +ive as 3y is positive and -2x , to be positive, has to have x as -ive..

now lets see the choices.. (1) y > 0 If y>0, x is -ive as proved in (b) above... suff

(2) 2x + 5y - 20 = 0.. this can be written as 2x+3y + 2y -20=0.. now 2x+3y<0, so 2y>20... or y is +ive and therefore x is -ive.... suff

ans D

how can you say 2x+3y<0?

Hi, 2x + 3y <0 comes from -2x>3y.. -2x>3y.. add 2x to both sides.. 2x-2x>3y+2x.. 0>2x+3y... hope it helps
_________________

Hi, 2x + 3y <0 comes from -2x>3y.. -2x>3y.. add 2x to both sides.. 2x-2x>3y+2x.. 0>2x+3y... hope it helps

Aye, it does! Thanks

Also, if I understand, <> sign changes in multiplication only![/quote]

hi, yes you are right , whenever you multiply two sides on either side of equality with a -ive sign or -ive quantity, you are required to change the greater/lesser than sign.. -2x>3y.. 2x<-3y..
_________________

Campus visits play a crucial role in the MBA application process. It’s one thing to be passionate about one school but another to actually visit the campus, talk...

Its been long time coming. I have always been passionate about poetry. It’s my way of expressing my feelings and emotions. And i feel a person can convey...

Written by Scottish historian Niall Ferguson , the book is subtitled “A Financial History of the World”. There is also a long documentary of the same name that the...

Post-MBA I became very intrigued by how senior leaders navigated their career progression. It was also at this time that I realized I learned nothing about this during my...