It is currently 23 Oct 2017, 12:09

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Intern
Joined: 18 Mar 2012
Posts: 47

Kudos [?]: 270 [1], given: 117

GPA: 3.7
If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

12 May 2012, 07:23
1
This post received
KUDOS
5
This post was
BOOKMARKED
00:00

Difficulty:

65% (hard)

Question Stats:

61% (02:15) correct 39% (01:20) wrong based on 89 sessions

HideShow timer Statistics

If $$4y^4 − 41y^2 + 100 = 0$$, then what is the sum of the two greatest possible values of $$y$$ ?

A. $$4$$

B. $$\frac{9}{2}$$

C. $$7$$

D. $$\frac{41}{4}$$

E. $$25$$

I get stuck when trying to solve this one. I can see that it will end up something along the lines of (x^2)^2=x^2 to factor it but still struggling.
[Reveal] Spoiler: OA

Kudos [?]: 270 [1], given: 117

Math Expert
Joined: 02 Sep 2009
Posts: 41913

Kudos [?]: 129489 [2], given: 12201

Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

12 May 2012, 11:32
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
alexpavlos wrote:
If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two greatest possible values of y ?

A. 4
B. 9/2
C. 7
D. 41/4
E. 25

I get stuck when trying to solve this one. I can see that it will end up something along the lines of (x^2)^2=x^2 to factor it but still struggling.

Factor $$4y^4-41y^2+100=0$$ (or just solve for $$y^2$$) --> $$(y^2-4)(4y^2-25)=0$$:

$$y^2-4=0$$ --> $$y=-2$$ or $$y=2$$;
$$4y^2-25=0$$ --> $$y=-\frac{5}{2}$$ or $$y=\frac{5}{2}$$;

So, the sum of the two greatest possible values of $$y$$ is $$2+\frac{5}{2}=\frac{9}{2}$$.

Answer: B.

Solving and Factoring Quadratics:
http://www.purplemath.com/modules/solvquad.htm
http://www.purplemath.com/modules/factquad.htm

Hope it helps.
_________________

Kudos [?]: 129489 [2], given: 12201

Director
Affiliations: GMATQuantum
Joined: 19 Apr 2009
Posts: 603

Kudos [?]: 490 [1], given: 17

Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

12 May 2012, 21:08
1
This post received
KUDOS
Expert's post
See attached image.

Dabral
Attachments

image22.png [ 78.65 KiB | Viewed 3377 times ]

Kudos [?]: 490 [1], given: 17

Intern
Joined: 23 Mar 2012
Posts: 3

Kudos [?]: 43 [0], given: 0

Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

12 May 2012, 08:04
alexpavlos wrote:
I get stuck when trying to solve this one. I can see that it will end up something along the lines of (x^2)^2=x^2 to factor it but still struggling.

If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two greatest possible values of y ?

A) 4
B) 9/2
C) 7
D) 41/4
E) 25

Hi this can be solved as below:-
we have
4y^4 − 41y^2 + 100 = 0
that can be factorised as (a-b)^2=a^2+b^2-2ab------------------------(a)
so we have (2y^2)^2-(2*(2y^2)(10))+10^2-y^2=0

or using (a)
(2y^2-10)^2-2y^2=0
or (2y^2-10)^2=2y^2
i.e we have two solns
on taking square root on both sides
(2y^2-10)=2y-----------------------(b)
or (2y^2-10)=-2y-----------------(c)
on solving (b) as normal eqn we have
(2y-5)(y+2) =0
so max value is y =5/2
on solving (c) we have
(2y+5)(y-2) =0
or max value as y=2
so adding these two values we have
2+5/2==9/2

I hope this helps

Kudos [?]: 43 [0], given: 0

Manager
Joined: 05 Jun 2010
Posts: 123

Kudos [?]: 13 [0], given: 12

Location: India
Concentration: Entrepreneurship, Operations
GMAT 1: 680 Q50 V31
GMAT 2: 690 Q47 V38
GMAT 3: 710 Q49 V39
WE: Design (Manufacturing)
Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

12 May 2012, 14:14
4y^4 − 41y^2 + 100 = 0

Let y^2=x

4x^2-41x+100=0

by finding the roots of the equation we get using [(-b(+/_)[square_root]b^2-4ac[/square_root)/2a}]

x=4 or 25/4

so y=2 or -2 or y=5/2 or -5/2

so adding the positive values

=2+5/2=9/2

Hence B

Hope that helps!!
_________________

Work with hope in Heart and dreams in the eyes .... And leave the mind for GMAT problems

Kudos [?]: 13 [0], given: 12

Senior Manager
Joined: 13 Aug 2012
Posts: 458

Kudos [?]: 542 [0], given: 11

Concentration: Marketing, Finance
GPA: 3.23
Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

21 Dec 2012, 06:33
rphardu wrote:
If 4y4 − 41y2 + 100 = 0, then what is the sum of the two greatest possible values of y ?

A)4
B)9/2
C)7
D)41/4
E)25

Let y^2 = x

4x^2 - 41x + 100 = 0
(4x - 25)(x - 4) = 0
x = 25/4 or x = 4

y = 5/2 or y = 2

= 5/2 + 2 = 9/2

Answer: B
_________________

Impossible is nothing to God.

Kudos [?]: 542 [0], given: 11

Senior Manager
Joined: 13 Aug 2012
Posts: 458

Kudos [?]: 542 [0], given: 11

Concentration: Marketing, Finance
GPA: 3.23
Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

26 Dec 2012, 22:58
rphardu wrote:
If 4y4 − 41y2 + 100 = 0, then what is the sum of the two greatest possible values of y ?

A)4
B)9/2
C)7
D)41/4
E)25

Let $$x = y^2$$

$$4(y^2)^2 - 41 (y^2) + 100 = 0$$
$$4x^2 - 41x^2 + 100 = 0$$

$$(4x - 25)(x - 4) = 0$$
$$x = \frac{25}{4} = y^2$$
$$y = \frac{5}{2}$$

$$x = 4$$
$$x = y^2 = 4$$
$$y = 2$$

Answer: $$\frac{5}{2} + 2 = \frac{9}{2}$$

Answer B
_________________

Impossible is nothing to God.

Kudos [?]: 542 [0], given: 11

VP
Joined: 18 Sep 2014
Posts: 1203

Kudos [?]: 870 [0], given: 75

Location: India
Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

04 Mar 2016, 06:18
$$4y^4 − 41y^2 + 100 = 0$$
This can be represented in the form of $$(a^2-2ab+b^2)=(a-b)^2$$ by adding and subtracting $$b^2$$ here for convenience.

$$(2y^2)^2-2(2y^2)\frac{41}{4}+(\frac{41}{4})^2-(\frac{41}{4})^2+100=0$$

$$(2y^2-\frac{41}{4})^2+100-(\frac{41}{4})^2=0$$

$$(2y^2-\frac{41}{4})^2-(\frac{81}{16})=0$$

$$(2y^2-\frac{41}{4})=\sqrt{(\frac{81}{16})}$$

$$(2y^2-\frac{41}{4})$$=+$$(\frac{9}{4})$$

$$2y^2=\frac{41}{4})$$+$$(\frac{9}{4})$$

$$2y^2=\frac{50}{4} or \frac{32}{4}$$

Thus $$y=$$+$$\frac{5}{2}$$ or +$$2$$

$$y=\frac{5}{2},\frac{-5}{2}$$,$$+2$$, $$-2$$

The two greatest possible values of $$y$$ are $$+2$$ and $$\frac{+5}{2}$$

their sum is $$2+\frac{5}{2}$$=$$\frac{9}{4}$$
_________________

The only time you can lose is when you give up. Try hard and you will suceed.
Thanks = Kudos. Kudos are appreciated

http://gmatclub.com/forum/rules-for-posting-in-verbal-gmat-forum-134642.html
When you post a question Pls. Provide its source & TAG your questions
Avoid posting from unreliable sources.

My posts
http://gmatclub.com/forum/beauty-of-coordinate-geometry-213760.html#p1649924
http://gmatclub.com/forum/calling-all-march-april-gmat-takers-who-want-to-cross-213154.html
http://gmatclub.com/forum/possessive-pronouns-200496.html
http://gmatclub.com/forum/double-negatives-206717.html
http://gmatclub.com/forum/the-greatest-integer-function-223595.html#p1721773
https://gmatclub.com/forum/improve-reading-habit-233410.html#p1802265

Kudos [?]: 870 [0], given: 75

Math Forum Moderator
Joined: 02 Aug 2009
Posts: 4994

Kudos [?]: 5533 [0], given: 112

Re: If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

04 Mar 2016, 09:14
alex1233 wrote:
If $$4y^4 − 41y^2 + 100 = 0$$, then what is the sum of the two greatest possible values of $$y$$ ?

A. $$4$$

B. $$\frac{9}{2}$$

C. $$7$$

D. $$\frac{41}{4}$$

E. $$25$$

I get stuck when trying to solve this one. I can see that it will end up something along the lines of (x^2)^2=x^2 to factor it but still struggling.

Hi,

every one has generally followed a single method..

I'll just give you two methods incase you get struck..

1) POE--

you can easily eliminate three choices and your prob of answering correctly will go up to 1/2 from 1/5..
$$4y^4 − 41y^2 + 100 = 0$$..
$$41y^2 - 4y^4 =100$$..
$$y^2(41 - 4y^2) =100$$..
Now 100 is a positive number, so LHS, y^2(41 - 4y^2), should also be positive..
In y^2(41 - 4y^2), y^2 will always be positive so 41-4y^2>0
or y^2<41/4..
y^2<10.25.. so y will be less than 3.3 approx..
even if both values are 3.3, sum =6.6..
only A and B are left..
SO , without doing anything, we have eliminated three choices..

2) $$4y^4 − 41y^2 + 100 = 0$$..

lets put this in (a-b)^2 format..
$$(2y^2)^2 −2*10*2y^2 + 10^2-y^2 = 0$$..
(2y^2-10)^2=y^2..
so we get two equations..

A) 2y^2-10=y..
2y^2-y-10=0..
2y^2-5y+4y-10=0..
y(2y-5) + 2(2y-5)=0..
(y+2)(2y-5)=0..
roots are 5/2 and -2..

B) 2y^2-10=-y..
2y^2+y-10=0..
2y^2+5y-4y-10=0..
y(2y+5) - 2(2y-5)=0..
(y-2)(2y+5)=0..
roots are -5/2 and 2..

so values are 5/2, 2, -2, -5/2..
sum of two biggest values= 2+5/2=9/2

B

_________________

Absolute modulus :http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html

Kudos [?]: 5533 [0], given: 112

Intern
Affiliations: Veritas Prep
Joined: 21 Dec 2014
Posts: 38

Kudos [?]: 36 [0], given: 68

Location: United States (DC)
My Company: www.parallaxprep.com
GMAT 1: 790 Q51 V51
GRE 1: 1600 Q800 V800
GPA: 3.11
WE: Education (Education)
If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two [#permalink]

Show Tags

10 Oct 2017, 01:33
Cheatyface method (for people too lazy to factor):

Divide through by $$4$$ to obtain $$y^4 − \frac{41}{4}y^2 + 25 = 0$$.

Substitute $$A = y^2$$ to obtain $$A^2 − \frac{41}{4}A + 25 = 0$$.

We know that the two solutions to a quadratic of the form $$x^2+bx+c = 0$$ must add up to $$-b$$, so our two solutions for $$A$$, a.k.a. $$y^2$$, add to $$\frac{41}{4}$$.

Of course the $$\frac{41}{4}$$ answer choice is for suckers; we want the sum of the positive roots of these two solutions. And we note that the answer choices are all rational numbers. So there ought to be two perfect squares that add to $$\frac{41}{4}$$. How about $$\frac{25}{4}$$ and $$\frac{16}{4}$$? (Bonus: These values correctly multiply out to $$25$$.) Well okay, the positive roots here are $$\frac{5}{2}$$ and $$\frac{4}{2}$$, and they add to $$\frac{9}{2}$$.

Kudos [?]: 36 [0], given: 68

If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two   [#permalink] 10 Oct 2017, 01:33
Display posts from previous: Sort by

If 4y^4 − 41y^2 + 100 = 0, then what is the sum of the two

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.