GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 05 Dec 2019, 10:40

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59561
If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 30 Jul 2018, 21:56
2
39
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

73% (02:12) correct 27% (02:47) wrong based on 1187 sessions

HideShow timer Statistics

If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)
Most Helpful Expert Reply
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 8282
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 30 Jul 2018, 23:12
3
1
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4a}\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Bunuel, pl relook ..\(b = 1 + \frac{1}{4a}\) should be \(b = 1 + \frac{1}{4}*a\)
otherwise you will not get the denominator as a multiple of 4

\(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}\)...
it is a geometric progression
sum = \(\frac{a(1-r^n)}{1-r}=1*(1-\frac{1}{4}^4)/(1-\frac{1}{4})=\frac{255}{256}/\frac{3}{4}=\frac{255*4}{256*3}=\frac{85}{64}\)...

\(b = 1 + \frac{a}{4}=1+\frac{85}{64*4}=\frac{341}{256}\)....

\(a-b=\frac{85}{64}-\frac{341}{256}=\frac{340-341}{256}=\frac{-1}{256}\)

B
_________________
Most Helpful Community Reply
Retired Moderator
User avatar
D
Joined: 30 Jan 2015
Posts: 789
Location: India
Concentration: Operations, Marketing
GPA: 3.5
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 31 Jul 2018, 02:47
7
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


a = 1 + 1/4 + 1/16 + 1/64
a = ( 64 + 16 + 4 + 1 ) / 64
a = 85 / 64

Now,
b = 1 + 1/4 * 85/64
b = 1 + 85/256
b = 341/256

Therefore,
a - b = 85/64 - 341/256
a - b = ( 85*4 - 341 ) / 256
a - b = (340 - 341)/256
a - b = - 1 / 256

Hence, B.
_________________
The few, the fearless !

Thanks :-)
General Discussion
Target Test Prep Representative
User avatar
V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8605
Location: United States (CA)
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 10 Aug 2018, 19:06
4
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


a - b

a - (1 + ¼a)

¾a - 1

¾(1 + ¼ + 1/16 + 1/64) - 1

¾(64/64 + 16/64 + 4/64 + 1/64) - 1

¾(85/64) - 1

255/256 - 256/256

-1/256

Answer: B
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern
Intern
avatar
B
Joined: 11 Oct 2018
Posts: 21
Location: Germany
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 12 Jan 2019, 07:24
3
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Hi,

this is my first post. Hope I did it correctly.

\(a=1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
\(b=1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}\)

\(a-b=1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}-1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\)
or
\(a-b=1-1+\frac{1}{4}-\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{1}{64}-\frac{1}{64}-\frac{1}{256}\)

Just simplify:

\(=-\frac{1}{256}\)
Intern
Intern
avatar
Joined: 11 Jul 2018
Posts: 19
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 30 Jul 2018, 22:49
2
Value of a = 1 + 1/4 = 1.25 (ignoring other bit which will make it slightly bigger than 1.25)
Value of b = 1 + 1/(4*1.25) = 1 + 1/5 = 1.20

Roughly a - b = 1.25 - 1.20 = .05 => Actual value of a will be slightly more than 1.25 and therefore, value of b will be slightly less than what is present. This will mean this difference will slightly bigger but not drastically big.

I will go with smaller option of D.

This is not a proper way to solve this query as it can be solve using equations or GP series etc in a proper manner but that will be too time consuming in exam.
Intern
Intern
avatar
B
Joined: 07 Feb 2017
Posts: 25
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 31 Jul 2018, 09:49
1
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Easier way to do rather than using Geo series formula is using substitution method.

\(b=1+\frac{1}{4} a\)
\(b=a+\frac{1}{256}\)
so, \(b-a = -\frac{1}{256}\)
Senior RC Moderator
User avatar
V
Joined: 02 Nov 2016
Posts: 4554
GPA: 3.39
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 06 Aug 2018, 02:42
1
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Bunuel

I think this question is already appeared in OG Quantitative review 2018. Kindly verify
_________________
Manager
Manager
User avatar
B
Joined: 19 Jan 2018
Posts: 84
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 25 Aug 2019, 08:39
1
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Simple solution to this problem if you apply logic:
We know that
\(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and
\(b = 1 + \frac{1}{4}a\)
We're solving for a - b
Plug a in for b so you get the following:

(\(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\)) - (\(1 + \frac{1}{4}[1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\)]

Distrubute \(\frac{1}{4}\)

(\(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\)) - (\(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256}\)]

The values in Red cross out, leaving you with \(\frac{-1}{256}\)
(\(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\)) - (\(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) + \(\frac{1}{256}\)]

Answer B
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 8282
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 28 Oct 2019, 05:36
1
StudiosTom wrote:
chetan2u wrote:
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4a}\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Bunuel, pl relook ..\(b = 1 + \frac{1}{4a}\) should be \(b = 1 + \frac{1}{4}*a\)
otherwise you will not get the denominator as a multiple of 4

\(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}\)...
it is a geometric progression
sum = \(\frac{a(1-r^n)}{1-r}=1*(1-\frac{1}{4}^4)/(1-\frac{1}{4})=\frac{255}{256}/\frac{3}{4}=\frac{255*4}{256*3}=\frac{85}{64}\)...

\(b = 1 + \frac{a}{4}=1+\frac{85}{64*4}=\frac{341}{256}\)....

\(a-b=\frac{85}{64}-\frac{341}{256}=\frac{340-341}{256}=\frac{-1}{256}\)

B

Hi chetan2u, Can you please elaborate the geometric progression formula aind its application.



HI,

A GP is a series where each successive number is SOME times the preceding term and this SOME could be any number. This is also referred as the RATIO or simply r. so if a, b, c,d ois the series in GP, b/a=r...
If 2, 4, 6, 8..r=4/2=2
If 4, 2, 1, 1/2....r=2/4=1/2.

There can be various applications which meets this requirement. Say a certain species doubles itself every year, or a certain amount of money increases by 10% every 4 months and so on.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59561
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 30 Jul 2018, 23:15
chetan2u wrote:
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4a}\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Bunuel, pl relook ..\(b = 1 + \frac{1}{4a}\) should be \(b = 1 + \frac{1}{4}*a\)
otherwise you will not get the denominator as a multiple of 4

\(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}\)...
it is a geometric progression
sum = \(\frac{a(1-r^n)}{1-r}=1*(1-\frac{1}{4}^4)/(1-\frac{1}{4})=\frac{255}{256}/\frac{3}{4}=\frac{255*4}{256*3}=\frac{85}{64}\)...

\(b = 1 + \frac{a}{4}=1+\frac{85}{64*4}=\frac{341}{256}\)....

\(a-b=\frac{85}{64}-\frac{341}{256}=\frac{340-341}{256}=\frac{-1}{256}\)

B

_______________
Edited. Thank you.
Intern
Intern
avatar
B
Status: GMAT PREP
Joined: 22 Jul 2018
Posts: 3
Concentration: Technology, Entrepreneurship
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 31 Jul 2018, 10:06
can this be done in 2 minutes?
Manager
Manager
User avatar
S
Joined: 16 Mar 2017
Posts: 61
Location: France
Concentration: Marketing, Strategy
GMAT 1: 640 Q38 V40
GMAT 2: 710 Q47 V41
WE: Marketing (Retail)
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 13 Aug 2018, 04:52
Manager
Manager
avatar
S
Joined: 28 Mar 2017
Posts: 66
Location: Sweden
Concentration: Finance, Statistics
Premium Member
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 14 Aug 2018, 01:32
2
How I solved it in 30s.

a= 1+0.25+(small numbers)=almost 1.3
b= 1+0,25*1.3=1+ slightly more than 0.3.
a - b= (less than) 1.3 - (more than) 1.3 = negative, but close to 0.

Answer options allow for B as best answer choice. B is correct.
Manager
Manager
avatar
B
Joined: 19 Aug 2016
Posts: 73
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 26 Aug 2018, 20:16
Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)


Hi Bunuel,

I took the LCM of b=1+1/4a

Then b became 5/4a

I got the answer as -85/256

Why can't we take the LCM and do it this way?

And if we can then either way, we must get the same answer..

Please help...thanks
Director
Director
User avatar
D
Status: Learning stage
Joined: 01 Oct 2017
Posts: 991
WE: Supply Chain Management (Energy and Utilities)
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 26 Aug 2018, 21:11
Hi Bunuel,

I took the LCM of b=1+1/4a

Then b became 5/4a

I got the answer as -85/256

Why can't we take the LCM and do it this way?

And if we can then either way, we must get the same answer..

Please help...thanks[/quote]


Hi zanaik89,
Refer the highlighted portion, It should be :
\(b=1+\frac{1}{4}a\)-------------(2)
=\(\frac{4+a}{4}\) (Though we don't require this step)
a=1+\(\frac{1}{4} + \frac{1}{16} + \frac{1}{64}\)=\(\frac{64+16+4+1}{64}\)=\(\frac{85}{64}\)------------(1)

Hence \(a-b=\frac{85}{64}-(1+\frac{1}{4}*\frac{85}{64})=\frac{85}{64}-1-\frac{85}{4*64}=\frac{(4*85)-(4*64)-85}{4*64}\)=-\(\frac{1}{256}\)

Another Method:-
\(a=1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
So, \(\frac{1}{4}a=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}\) (Dividing both sides by 4)
So, \(b=1+\frac{1}{4}a=1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256}\)

Hence, \(a-b=(1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64})-(1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\frac{1}{256})\)
Or, \(a−b=−\frac{1}{256}\)
_________________
Regards,

PKN

Rise above the storm, you will find the sunshine
Intern
Intern
avatar
B
Joined: 18 Jun 2017
Posts: 8
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 09 Dec 2018, 12:11
Hello to everyone!
Is there any way to solve this task in 1 minute, please? Any tricks or magic?

The task is not complicated, but the problem takes more than 1.5 to be solved out.

Thanks.
Intern
Intern
avatar
B
Joined: 01 May 2017
Posts: 34
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 09 Jan 2019, 11:10
get value of A and B then substitute, you will easily get the answer.
Intern
Intern
avatar
B
Joined: 24 Apr 2018
Posts: 1
If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 26 Apr 2019, 21:56
a=1+1/4+1/4^2 +1/4^3


B=1+1/4a , substitue vaule a in to b

b= 1+1/4(1+1/4+1/4^2 +1/4^3 )
= 1+1/4+1/4^2 +1/4^3 +1/4^4

a-b= 1+1/4+1/4^2 +1/4^3 - (1+1/4+1/4^2 +1/4^3 +1/4^4 )

=-1/4^4
=-1/256
Intern
Intern
User avatar
B
Joined: 26 May 2019
Posts: 16
WE: Accounting (Accounting)
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value  [#permalink]

Show Tags

New post 04 Aug 2019, 19:19
Tried both geometric progression method and substitution, and substitution was faster for me.

Geometric progression just had too much calculation with all the fractions; substitution reduced the calculations.

Given:
\(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} = \frac{85}{64}\)
\(b = 1 + (\frac{1}{4})*a\)

Substitution Method:
a - b
\(= \frac{85}{64} - (1 + (\frac{1}{4})*(\frac{85}{64}))\)
\(= \frac{85}{64} - \frac{64}{64} - (\frac{1}{4})*(\frac{85}{64})\)
\(= \frac{21}{64} - (\frac{1}{4})*(\frac{85}{64})\)
\(= \frac{84}{256} - \frac{85}{256}\)
\(= \frac{-1}{256}\)

Answer is B \(\frac{-1}{256}\)


Bunuel wrote:
If \(a = 1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64}\) and \(b = 1 + \frac{1}{4}a\), then what is the value of a – b ?


A. -85/256

B. -1/256

C. -1/4

D. 125/256

E. 169/256


NEW question from GMAT® Quantitative Review 2019


(PS14293)
GMAT Club Bot
Re: If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value   [#permalink] 04 Aug 2019, 19:19

Go to page    1   2    Next  [ 25 posts ] 

Display posts from previous: Sort by

If a = 1 + 1/4 + 1/16 + 1/64 and b = 1 + 1/4a, then what is the value

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne