Author 
Message 
TAGS:

Hide Tags

VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1122
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8

Re: If a and b are distinct integers and a^b = b^a [#permalink]
Show Tags
27 Apr 2013, 04:05
1
This post was BOOKMARKED
imhimanshu wrote: Hi Zarrolou, Would you mind giving a shot on this one with an algebraic/graphical way.. Regards, H A graph here is not possible, we would need a third dimension An algebric way is also very difficult to obtain, and is way beyond the GMATMath Remember: \(a^b=b^a\) is true for the following integers (1,1) (2,2) and all the values such that a=b (of course...) AND (4,2) (2,4) \(2^4=4^2\) same thing for values <0: (1,1) ... AND (4,2) ( 2,4) If you want you can take away this simple tip, which is in my opinion much easier than solve the equation
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason Tips and tricks: Inequalities , Mixture  Review: MGMAT workshop Strategy: SmartGMAT v1.0  Questions: Verbal challenge SC III CR New SC set out !! , My QuantRules for Posting in the Verbal Forum  Rules for Posting in the Quant Forum[/size][/color][/b]



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7438
Location: Pune, India

Re: If a and b are distinct integers and a^b = b^a [#permalink]
Show Tags
27 Apr 2013, 23:53
imhimanshu wrote: Would you mind giving a shot on this one with an algebraic/graphical way.. Check this out: http://www.veritasprep.com/blog/2013/01 ... cognition/It uses a graphical and pattern approach to discuss this question.
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Intern
Joined: 12 Apr 2013
Posts: 9

Re: Try this one  700 Level, Number Properties [#permalink]
Show Tags
28 Apr 2013, 03:32
VeritasPrepKarishma wrote: Anyone else would like to take a shot at proving it mathematically in a different way? Try it. Hi my friends, this is my solution: (please forgive me if my bad English confuses you)For this solution to be short, le'ts assume we already have : \(0<a<b\) and we found that \((2,4)\) are one pair that satisfies the equation now let's consider \(3=<a<b\) we can prove that the pair (a,b) that satisfies the equation does not exist if \(3=<a<b\) even when a and b are not intengers. let's see : \(a^b=b^a\) so \(ln(a^b)=ln(b^a)\) so \(b.ln(a)=a.ln(b)\) it is the same as this equation \(\frac{lna}{a}=\frac{lnb}{b}\) let's consider function : \(f(x)=\frac{lnx}{x}\) (with \(x>=3\)) we have \(\frac{df(x)}{dx}=\frac{1lnx}{x^2}\) because \(x>=3>e\) we have \(1lnx<0\) and then we have \(\frac{df(x)}{dx}<0\) with \(x>=3\) now if \(3=<a<b\) we always have \(\frac{lna}{a}>\frac{lnb}{b}\) or \(a^b>b^a\)(e.g \(5^6>6^5\) and \(6^7>7^6\) and so on) so the conclusion is if a and b are distinct integers with \(0<a<b\) we have one pair (2,4) with \(a>b>0\) we have another pair (4,2) but if \(3<a<b\) or \(3<=b<a\) the pair that satisfiies the equation does not exist.
_________________
Life is not easy I knew that and now I don't even expect life to be easy



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15913

Re: If a and b are distinct integers and a^b = b^a, how many [#permalink]
Show Tags
14 Jul 2014, 09:46
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Manager
Joined: 22 Feb 2009
Posts: 218

Re: If a and b are distinct integers and a^b = b^a, how many [#permalink]
Show Tags
11 Aug 2014, 15:11
VeritasPrepKarishma wrote: The answer is indeed D (4 solutions). Good work everyone!
Now for the explanation. I tend to get a little verbose... Bear with me.
Given \(a^b = b^a\) and a and b are distinct integers. First thing that comes to mind is that if we didn't need distinct integers then the answer would have simply been infinite since \(1^1 = 1^1, 2^2 = 2^2, 3^3 = 3^3\) and so on... Next, integers include positive and negative numbers. If a result is true for positive a and b, it will also be true for negative a and b and vice versa. The reason for this is that both a and b will be either even or both will be odd because \((Even)^{Odd}\)cannot be equal to \((Odd)^{Even}\) Also, it is not possible that a is positive while b is negative or vice versa because then one side of the equation will have negative power and the other side will have positive power.
So basically, I need to consider positive integers (I can mirror it on to the negative integers subsequently). Also, I will consider only numbers where a < b because the equation is symmetrical in a and b. So if I get a solution of two distinct such integers (e.g. 2 and 4), it will give me two solutions since a can take 2 or 4 which implies that b will take 4 or 2.
Let me take a look at 0. It cannot be 'a' since it will lead to \(0^b = b^0\), not possible. Next, a cannot be 1 either since it will lead to \(1^b = b^1\), not possible. Let us consider a = 2. \(2^3 < 3^2\); \(2^4 = 4^2\)(Got my first solution); \(2^5 > 5^2\); \(2^6 > 6^2\) and the difference keeps on widening. This is where pattern recognition comes in the picture. The gap will keep widening. Now I will consider a = 3. \(3^4 > 4^3\) (first term itself is greater); \(3^5 > 5^3\) and the gap keeps widening. I can try a couple more values but the pattern should be clear by now. \(4^5 > 5^4, 5^6 > 6^5\) and so on... and as the values keep increasing, the difference in the two terms will keep increasing...
Note: Generally, out of \(a^b\) and \(b^a\), the term where the base is smaller will be the bigger term (I am considering only positive integers here.). In very few cases will it be smaller or equal (only in case of a = 1, \(2^3\) and \(2^4\)).
So I have four solutions (2, 4), (4, 2), (2, 4) and (4, 2). This question is pattern recognition based.
Now, we know that if the question did not have the word 'distinct', the answer would have been different, but what if the question did not have the word 'integer'? Would it make a difference?  Something to think about...
(A lot verbose, actually!) If the question did not have the word 'integer'? Yes, the answer will different. For example: 2^k = k^2 K which is integer could be 2 and 4, and the other k will be a number that is negative. I am sure that is a negative number, since I draw the graph of 2^k and k^2, the two lines will intersect somewhere in the negative area of X axis.
_________________
......................................................................... +1 Kudos please, if you like my post



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15913

Re: If a and b are distinct integers and a^b = b^a, how many [#permalink]
Show Tags
19 Aug 2015, 04:45
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Intern
Joined: 09 Jul 2015
Posts: 9
Location: India
WE: Marketing (Other)

If a and b are distinct integers and a^b = b^a, how many [#permalink]
Show Tags
19 Aug 2015, 07:05
VeritasPrepKarishma wrote: A 700level question for the GMAT committed souls studying over the weekend.
If a and b are distinct integers and \(a^b = b^a\), how many solutions does the ordered pair (a, b) have?
(A) None (B) 1 (C) 2 (D) 4 (E) Infinite
Hint: Use logic, not Math. Look for patterns. Why is \(0^1\) and \(1^0\) not applicable? Aren't they both = 1?



Math Forum Moderator
Joined: 20 Mar 2014
Posts: 2642
Concentration: Finance, Strategy
GPA: 3.7
WE: Engineering (Aerospace and Defense)

If a and b are distinct integers and a^b = b^a, how many [#permalink]
Show Tags
19 Aug 2015, 07:26
nitika231 wrote: VeritasPrepKarishma wrote: A 700level question for the GMAT committed souls studying over the weekend.
If a and b are distinct integers and \(a^b = b^a\), how many solutions does the ordered pair (a, b) have?
(A) None (B) 1 (C) 2 (D) 4 (E) Infinite
Hint: Use logic, not Math. Look for patterns. Why is \(0^1\) and \(1^0\) not applicable? Aren't they both = 1? for any 'n' \(\in\)integer \(0^n\) = 0 , while \(n^0\) = 1, Additionally, n/0 = not defined
_________________
Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidatedthursdaywithronlistforallthesections201006.html#p1544515 Rules for Posting in Quant Forums: http://gmatclub.com/forum/rulesforpostingpleasereadthisbeforeposting133935.html Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rulesforpostingpleasereadthisbeforeposting133935.html#p1096628 GMATCLUB Math Book: http://gmatclub.com/forum/gmatmathbookindownloadablepdfformat130609.html Everything Related to Inequalities: http://gmatclub.com/forum/inequalitiesmadeeasy206653.html#p1582891 Inequalities tips: http://gmatclub.com/forum/inequalitiestipsandhints175001.html Debrief, 650 to 750: http://gmatclub.com/forum/650to750a10monthjourneytothescore203190.html



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15913

Re: If a and b are distinct integers and a^b = b^a, how many [#permalink]
Show Tags
18 Sep 2016, 20:26
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: If a and b are distinct integers and a^b = b^a, how many
[#permalink]
18 Sep 2016, 20:26



Go to page
Previous
1 2
[ 29 posts ]




