Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Two ways this can happen: 1- Even/ Even= Even or 2- Even/Odd= Even So Ab MUST be even, with either A or B being even, Ab does not have to be positive, as B could be negative and once it is raised to 2 it becomes positive again, and of course, C could be Odd or Even as described above.

Re: If a, b, and c are integers and a*b^2/c is a positive even [#permalink]

Show Tags

21 Sep 2013, 05:58

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If a, b, and c are integers and a*b^2/c is a positive even [#permalink]

Show Tags

09 Nov 2014, 18:46

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If a, b, and c are integers and a*b^2/c is a positive even [#permalink]

Show Tags

22 Jan 2016, 01:49

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If a, b, and c are integers and a*b^2/c is a positive even [#permalink]

Show Tags

17 Apr 2017, 05:05

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

If a, b, and c are integers and a*b^2/c is a positive even integer, which of the following must be true?

I. ab is even II. ab > 0 III. c is even

A. I only B. II only C. I and II D. I and III E. I, II, and III

We are given that (a*b^2)/c is a positive even integer. Therefore, a*b^2 must be even. (If a*b^2 is odd, (a*b^2)/c can’t ever be even.)

Now recall that the product of an even number and any integer is even, so either a or b, or both, must be even. Thus we see that ab must be an even integer. However, ab DOES NOT have to be greater than zero, since a could be -2 and b could be 1. Finally, we see that c does not have to be even, since a could be -2, b could be 1, and c = -1. Thus, only Roman numeral I must be true.

Answer: A
_________________

Scott Woodbury-Stewart Founder and CEO

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...