Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If a committee of 3 people is to be selected from among 5 [#permalink]

Show Tags

05 Jan 2010, 07:46

4

This post received KUDOS

37

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

70% (00:48) correct
30% (01:11) wrong based on 1014 sessions

HideShow timer Statistics

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?

A. 20 B. 40 C. 50 D. 80 E. 120

Another way to think about this problem:

Each couple can send only one "representative" to the committee. Let's see in how many ways we can choose 3 couples (as there should be 3 members) to send only one "representatives" to the committee: 5C3=10.

But these 3 couples can send two persons (husband or wife): 2*2*2=2^3=8.

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible? A. 20 B. 40 C. 50 D. 80 E. 120

total no for selecting 3 out of 10=10c3=120

no. of ways in which no two married people included= tot- 2 married couple included 2 married couple can be included in 5c1( no. of ways selecting a couple) * 8c1( no. of ways selecting the third person)=5 * 8=40

reqd comb=120-40=80 hence D
_________________

GMAT is not a game for losers , and the moment u decide to appear for it u are no more a loser........ITS A BRAIN GAME

Step 1 - find the combinations without any restrictions

10C3 = 120

Step 2 - subtract the combinations that would have a couple in the committee

5C1 x 4C1 x 2 = 40

In this step, we first find the # of ways to choose a couple, which is 5C1=5. After getting the first couple, we need 1 more member, so we choose 1 couple of the remainin 4 couples, which is 4C1 = 4. But within this new couple, we can either choose the man or the woman, so we need to x2.

Step 3 - find answer (no restrictions minus restrictions)

ANS -80.. total people=10.. ways to select 3 out of them=10c3=120... it includes comb including couple.. ways in which couple are included =8c1*5=40.. so ans reqd 120-40=80... (if we take a gp to include a couple ,it will include couple +any one of rest 8 so 8c1 ways .. 5 couple so 5*8c1=40) _________________

Re: If a committee of 3 people is to be selected from among 5 [#permalink]

Show Tags

25 Oct 2013, 19:01

5

This post received KUDOS

Using slot method: First person can be chosen -> 10 ways, 2nd person can be chosen -> 8 ways (1st person and his wife are not candidates) and 3rd person can be chosen -> 6 ways (1st person/2nd person and their wives are out) Answer -> 10*8*6/6 = 80 (divide by 6 because the 3 people can be chosen in any order (i.e. 3! = 3*2*1 ways))

1) Selecting All 3 husbands: This would be\(5C3 = 10\) 2) Selecting 2 husbands and 1 Wife: \(5C2 * 3\) (As Wife cannot be for the 2 husbands selected) \(= 30\) 3) Selecting All 3Wives: This would be \(5C3 = 10\) 4) Selecting 2 Wives and 1 Husband: \(5C2 * 3\)(As Husband cannot be for the 2 Wives selected) \(= 30\)

Total Commitees \(= 10 + 30 + 10 + 30 = 80\)

Rgds, Rajat
_________________

If you liked the post, please press the'Kudos' button on the left

Re: If a committee of 3 people is to be selected [#permalink]

Show Tags

23 May 2014, 00:06

2

This post received KUDOS

achakrav2694 wrote:

I would like to know the best way to approach a problem similar to the one below, or if anyone has any tricks to solve it. I don't fully understand the GMAC explanation.

Q: If a committee of 3 people is to be selected from 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible? A) 20 B) 40 C) 50 D) 80 E) 120

Answer is D, 80.

The explanation given says that there are 10 people who can be the first, 8 people who can be the second and 6 that can be the third. Because there are 6 ways of ordering 3 people, the answer is (10*8*6)/6. I find this slightly confusing and unintuitive. Does anyone have a method or easier explanation?

Before posting a question, It is worthwhile to use Search option to check if the question has been answered before. Since this is your 2nd post, I would suggest you to go through the below links for better navigation on Gmatclub

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?

A. 20 B. 40 C. 50 D. 80 E. 120

We are given that there are five married couples (or 10 people) and we need to determine the number of ways of choosing 3 people in which no two people are a married couple. So this is a special combination problem. Before we tackle this problem, let’s review a combination problem with no restrictions.

With no restrictions, the number of ways of choosing 3 people from 10 people is 10C3, which is calculated as follows:

(10 x 9 x 8)/3! = 120

10, 9 and 8, in the numerator, represent the number of ways the first, second and third person can be chosen respectively. We divide the numerator by 3! because in a combination problem we do not care about the order in which the 3 people are chosen.

However, in this (special combination) problem, 3 people are chosen in which no married couple can serve together on the committee. The first person could be any one of the 10 people. However, once a person is selected, that person’s spouse cannot also be selected for the committee. This reduces the second person to 8 possible people (one person has already been selected, and that person’s spouse now cannot be selected). Once the second person is chosen for the committee, that person’s spouse cannot be chosen. This reduces the number of people who could be chosen as the third person to 6. Therefore, the number of ways of choosing these 3 people is:

(10 x 8 x 6)/3! = 80

Thus, there are 80 ways to choose such a committee.

Answer: D
_________________

Scott Woodbury-Stewart Founder and CEO

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions

Re: If a committee of 3 people is to be selected from among 5 [#permalink]

Show Tags

15 Jul 2014, 04:06

1

This post received KUDOS

1

This post was BOOKMARKED

Bunuel wrote:

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?

A. 20 B. 40 C. 50 D. 80 E. 120

Another way to think about this problem:

Each couple can send only one "representative" to the committee. Let's see in how many ways we can choose 3 couples (as there should be 3 members) to send only one "representatives" to the committee: 5C3=10.

But these 3 couples can send two persons (husband or wife): 2*2*2=2^3=8.

Total # of ways: 5C3*2^3=80.

Answer: D.

wow superb approach I would give you 100 Kudos. THANKS Bunuel.
_________________

Like my post Send me a Kudos It is a Good manner. My Debrief: http://gmatclub.com/forum/how-to-score-750-and-750-i-moved-from-710-to-189016.html

If a committee of 3 people is to be selected from among 5 [#permalink]

Show Tags

15 Sep 2014, 18:02

1

This post received KUDOS

For those as challenged with math as myself, try this (apologies if this has already been done):

Consider the "slot method"

We need to select three people out a total of ten people (5 couples=10ppl), so create three "slots"

_ _ _ 1 2 3

The only restrictions we have are that we cant pick an individual and that individual's spouse, nor can we select any individual twice. Knowing this, we can put any of our 10 people in the first slot. The second spot, however, will be limited to 8ppl (10 total less the person we placed in spot one, leaves 9, less that person's spouse, leaves 8). The third slot will only have 6 possibilities (10 total less the two ppl already placed and each of their spouses). Fill in the slots:

1086 1 2 3

We would then multiply across to get 10*8*6=480

When using the Slot method, if the order of the selections does not matter (as is the case here) we must divide the the product of the slots by n!, where n is just the number of slots.

480/3! =480/6 = 80

Generally, you'd want to simplify before dividing, so the 2*3 in the 3! term would cancel the 6 in the numerator, and you'd just be left with (10*8)/1 or 80.

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?

Another way to think about this problem:

Each couple can send only one "representative" to the committee. Let's see in how many ways we can choose 3 couples (as there should be 3 members) to send only one "representatives" to the committee: 5C3=10.

But these 3 couples can send two persons (husband or wife): 2*2*2=2^3=8.

If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?

Another way to think about this problem:

Each couple can send only one "representative" to the committee. Let's see in how many ways we can choose 3 couples (as there should be 3 members) to send only one "representatives" to the committee: 5C3=10.

But these 3 couples can send two persons (husband or wife): 2*2*2=2^3=8.

Total # of ways: 5C3*2^3=80.

I like this way of thinking and the calculations seem simpler and quicker.

We’ve given one of our favorite features a boost! You can now manage your profile photo, or avatar , right on WordPress.com. This avatar, powered by a service...

Sometimes it’s the extra touches that make all the difference; on your website, that’s the photos and video that give your content life. You asked for streamlined access...

A lot has been written recently about the big five technology giants (Microsoft, Google, Amazon, Apple, and Facebook) that dominate the technology sector. There are fears about the...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...