Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 26 May 2017, 21:59

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If a right triangle has area 28 and hypotenuse 12, what is

Author Message
TAGS:

### Hide Tags

Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 81

Kudos [?]: 1076 [1] , given: 157

If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

13 Jun 2010, 05:04
1
KUDOS
9
This post was
BOOKMARKED
00:00

Difficulty:

35% (medium)

Question Stats:

75% (03:09) correct 25% (02:18) wrong based on 215 sessions

### HideShow timer Statistics

If a right triangle has area 28 and hypotenuse 12, what is its perimeter?

A. 20
B. 24
C. 28
D. 32
E. 36
[Reveal] Spoiler: OA

_________________

Last edited by Bunuel on 26 Dec 2013, 03:47, edited 1 time in total.
Renamed the topic, edited the question and added the OA.
Senior Manager
Joined: 30 Aug 2009
Posts: 286
Location: India
Concentration: General Management
Followers: 3

Kudos [?]: 171 [1] , given: 5

### Show Tags

13 Jun 2010, 06:17
1
KUDOS
1
This post was
BOOKMARKED
Hussain15 wrote:
If a right triangle has area 28 and hypotenuse 12, what is its perimeter?

A. 20
B. 24
C. 28
D. 32
E. 36

C - 28
let the other 2 sides be a and b then we have 1/2 * a*b = 28 or a*b =56
also we have a^2 + b^2 = 144

adding 2ab to a^2 + b^2 we have a^2 + b^2 + 2ab = 144 + 2*56 = 256 => (a+b)^2 = 256 or a+ b = 16. So perimeter is a+b+ hypotenuse = 16+ 12 = 28
Math Expert
Joined: 02 Sep 2009
Posts: 38908
Followers: 7740

Kudos [?]: 106262 [3] , given: 11618

### Show Tags

13 Jun 2010, 06:27
3
KUDOS
Expert's post
1
This post was
BOOKMARKED
Hussain15 wrote:
If a right triangle has area 28 and hypotenuse 12, what is its perimeter?

A. 20
B. 24
C. 28
D. 32
E. 36

Let the legs of this right triangle be $$x$$ and $$y$$.

Given: $$area=\frac{xy}{2}=28$$ --> $$xy=56$$ and $$hypotenuse=x^2+y^2=12^2$$.
Question: $$P=x+y+12=?$$, so we should calculate the value of $$x+y$$.

Square $$x+y$$ --> $$(x+y)^2=x^2+2xy+y^2$$. As $$xy=56$$ and $$x^2+y^2=12^2$$, then: $$(x+y)^2=x^2+2xy+y^2=12^2+2*56=256$$ --> $$x+y=\sqrt{256}=16$$.

$$P=x+y+12=16+12=28$$.

_________________
Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 81

Kudos [?]: 1076 [1] , given: 157

### Show Tags

13 Jun 2010, 07:41
1
KUDOS
xy=56 & x+y=16,, what will be the values of x & y??

Posted from my mobile device
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 38908
Followers: 7740

Kudos [?]: 106262 [0], given: 11618

### Show Tags

13 Jun 2010, 07:54
Hussain15 wrote:
xy=56 & x+y=16,, what will be the values of x & y??

Posted from my mobile device

We have the final answer without calculating the exact values of $$x$$ and $$y$$. So it doesn't matter. But if you are interested:

$$xy=56$$ and $$x+y=16$$, $$y=16-x$$:

$$x(16-x)=56$$ --> $$x^2-16x+56=0$$ --> $$x=8-2\sqrt{2}$$ and $$y=16-x=8+2\sqrt{2}$$ OR $$x=8+2\sqrt{2}$$ and $$y=16-x=8-2\sqrt{2}$$.

Hope it helps.
_________________
Retired Moderator
Status: The last round
Joined: 18 Jun 2009
Posts: 1300
Concentration: Strategy, General Management
GMAT 1: 680 Q48 V34
Followers: 81

Kudos [?]: 1076 [0], given: 157

### Show Tags

13 Jun 2010, 09:12
Thanks Bunuel!! Actually I started to solve this problem by using 3 4 5 formula of right triangle I.e 3^2+4^2= 5^2.This ended no where!!

Posted from my mobile device
_________________
Intern
Joined: 25 Mar 2010
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

### Show Tags

21 May 2011, 18:58
Apologies

Can someone explain why we are adding 2ab?

I don't understand that part.

Cheers
Math Forum Moderator
Joined: 20 Dec 2010
Posts: 2013
Followers: 163

Kudos [?]: 1826 [0], given: 376

### Show Tags

21 May 2011, 23:33
1
This post was
BOOKMARKED
k4lnamja wrote:
Apologies

Can someone explain why we are adding 2ab?

I don't understand that part.

Cheers

No need to be apologetic k4lnamja. You can ask any question so far it's related to the topic.

We are dealing with a right angle triangle;

We are given its area and the hypotenuse and we are asked for perimeter.

Right angle triangle has three sides; one of which is hypotenuse. If we know the length of the other two, we will have the perimeter. However, there is no way to find out the length of the other two sides individually. Thus, our intention is to find the combined length of the other two sides and add it up with the hypotenuse to get the perimeter.

How can we use the information to know the combined length of the other two sides. Here's how.

Hypotenuse = c = 12
Let the other two sides of the right angle triangle be "a" and "b" and we know these two sides are perpendicular to each other.

Area = 28
Area of a triangle = 1/2*base*height = 1/2*a*b

1/2*a*b=28
a*b=56
c=12

As per pythagoras:
a^2+b^2=c^2
(a+b)^2-2ab=c^2
(a+b)^2-2*56=12^2
(a+b)^2-112=144
(a+b)^2=256
a+b=16

Thus, we know the sum of other two sides.
a+b=16
c=12
a+b+c=16+12=28
******************

Ans: "C"

**********************
Just to expand the formula used:
(a+b)^2=a^2+b^2+2ab
(a+b)^2-2ab=a^2+b^2
(a+b)^2-2ab=c^2
**********************
_________________
VP
Status: There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Joined: 08 May 2009
Posts: 1334
Followers: 17

Kudos [?]: 254 [0], given: 10

### Show Tags

23 May 2011, 23:14
1/2 * 12 * altitude = 28
altitude = 7

using similar triangle

7/x = x/12 gives x^2 = 84

12^2 - 84 = 60

thus 60 ^ (1/2) + 84 ^(1/2) + 12 = 28.7 approx.

Hence C.
_________________

Visit -- http://www.sustainable-sphere.com/
Promote Green Business,Sustainable Living and Green Earth !!

Senior Manager
Joined: 05 May 2011
Posts: 358
Location: United States (WI)
GMAT 1: 780 Q49 V50
WE: Research (Other)
Followers: 7

Kudos [?]: 97 [0], given: 35

### Show Tags

27 Aug 2011, 08:06
thank you that was very helpful
Director
Joined: 01 Feb 2011
Posts: 755
Followers: 14

Kudos [?]: 125 [0], given: 42

### Show Tags

27 Aug 2011, 09:29
area = (1/2)bh = 28 => bh=56

hypotenuse = sqrt(b^2+h^2) = 12 => b^2+h^2 = 144

perimeter = b+h+sqrt(b^2+h^2)

we know that (b+h)^2 = b^2+h^2+2bh

= 144+2(56)

=> b+h = 16

=> perimeter = 16+12 = 28
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15472
Followers: 649

Kudos [?]: 209 [0], given: 0

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

28 Jun 2015, 10:50
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Current Student
Joined: 04 May 2015
Posts: 75
Concentration: Strategy, Operations
WE: Operations (Military & Defense)
Followers: 1

Kudos [?]: 16 [0], given: 58

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

16 Aug 2015, 18:08
amit2k9 wrote:
1/2 * 12 * altitude = 28
altitude = 7

using similar triangle

7/x = x/12 gives x^2 = 84

12^2 - 84 = 60

thus 60 ^ (1/2) + 84 ^(1/2) + 12 = 28.7 approx.

Hence C.

I know it's been a long time since this post was made, but is anyone able to explain where 7/x = x/12 gives x^2 = 84 comes from??? I would like to try and understand this alternate approach that uses the hypotenuse as the base.

Thanks!
_________________

If you found my post useful, please consider throwing me a Kudos... Every bit helps

Math Expert
Joined: 02 Sep 2009
Posts: 38908
Followers: 7740

Kudos [?]: 106262 [0], given: 11618

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

16 Aug 2015, 18:12
DropBear wrote:
amit2k9 wrote:
1/2 * 12 * altitude = 28
altitude = 7

using similar triangle

7/x = x/12 gives x^2 = 84

12^2 - 84 = 60

thus 60 ^ (1/2) + 84 ^(1/2) + 12 = 28.7 approx.

Hence C.

I know it's been a long time since this post was made, but is anyone able to explain where 7/x = x/12 gives x^2 = 84 comes from??? I would like to try and understand this alternate approach that uses the hypotenuse as the base.

Thanks!

Cross-multiply $$\frac{7}{x} = \frac{x}{12}$$ to get $$7*12=x*x$$ --> $$84=x^2$$.
_________________
Current Student
Joined: 04 May 2015
Posts: 75
Concentration: Strategy, Operations
WE: Operations (Military & Defense)
Followers: 1

Kudos [?]: 16 [0], given: 58

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

16 Aug 2015, 18:20
Bunuel wrote:
DropBear wrote:
amit2k9 wrote:
1/2 * 12 * altitude = 28
altitude = 7

using similar triangle

7/x = x/12 gives x^2 = 84

12^2 - 84 = 60

thus 60 ^ (1/2) + 84 ^(1/2) + 12 = 28.7 approx.

Hence C.

I know it's been a long time since this post was made, but is anyone able to explain where 7/x = x/12 gives x^2 = 84 comes from??? I would like to try and understand this alternate approach that uses the hypotenuse as the base.

Thanks!

Cross-multiply $$\frac{7}{x} = \frac{x}{12}$$ to get $$7*12=x*x$$ --> $$84=x^2$$.

Hi Bunuel,

Thanks for the very quick reply. I understand the calculation, just not sure about how we use similar triangles to arrive at that line in the first place? Don't understand why we are doing $$\frac{7}{x} = \frac{x}{12}$$ in the first place... Sorry if this seems rudimentary...
_________________

If you found my post useful, please consider throwing me a Kudos... Every bit helps

Math Forum Moderator
Joined: 20 Mar 2014
Posts: 2644
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 128

Kudos [?]: 1475 [0], given: 789

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

16 Aug 2015, 18:24
DropBear wrote:
amit2k9 wrote:
1/2 * 12 * altitude = 28
altitude = 7

using similar triangle

7/x = x/12 gives x^2 = 84

12^2 - 84 = 60

thus 60 ^ (1/2) + 84 ^(1/2) + 12 = 28.7 approx.

Hence C.

I know it's been a long time since this post was made, but is anyone able to explain where 7/x = x/12 gives x^2 = 84 comes from??? I would like to try and understand this alternate approach that uses the hypotenuse as the base.

Thanks!

As a matter of fact, the text in red above is incorrect. The altitude should be 14/3 and NOT 7 as it has been calculated. The final answer as well is an integer, dont know how is the poster getting a decimal value.

IMO, the method is a 'forced' one as I am having difficulty in coming to the same equation for 'x'. Not a good method.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Current Student
Joined: 04 May 2015
Posts: 75
Concentration: Strategy, Operations
WE: Operations (Military & Defense)
Followers: 1

Kudos [?]: 16 [0], given: 58

If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

16 Aug 2015, 18:50
Engr2012 wrote:
DropBear wrote:
amit2k9 wrote:
1/2 * 12 * altitude = 28
altitude = 7

using similar triangle

7/x = x/12 gives x^2 = 84

12^2 - 84 = 60

thus 60 ^ (1/2) + 84 ^(1/2) + 12 = 28.7 approx.

Hence C.

I know it's been a long time since this post was made, but is anyone able to explain where 7/x = x/12 gives x^2 = 84 comes from??? I would like to try and understand this alternate approach that uses the hypotenuse as the base.

Thanks!

As a matter of fact, the text in red above is incorrect. The altitude should be 14/3 and NOT 7 as it has been calculated. The final answer as well is an integer, dont know how is the poster getting a decimal value.

IMO, the method is a 'forced' one as I am having difficulty in coming to the same equation for 'x'. Not a good method.

I completely overlooked that part in red, in that case 1/2 * 12 * altitude = 28 altitude = 4 2/3. However I will take your advice and leave this one alone as I don't want to confuse myself.

Edit: Edited 4 3/2 to 4 2/3

_________________

If you found my post useful, please consider throwing me a Kudos... Every bit helps

Last edited by DropBear on 16 Aug 2015, 19:48, edited 1 time in total.
Math Forum Moderator
Joined: 20 Mar 2014
Posts: 2644
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 128

Kudos [?]: 1475 [0], given: 789

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

16 Aug 2015, 19:46
DropBear wrote:

I completely overlooked that part in red, in that case 1/2 * 12 * altitude = 28 altitude = 4 3/2. However I will take your advice and leave this one alone as I don't want to confuse myself.

I believe you meant 4 2/3 instead of 4 3/2
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Manager
Status: 2 months to go
Joined: 11 Oct 2015
Posts: 135
GMAT 1: 730 Q49 V40
GPA: 3.8
Followers: 2

Kudos [?]: 104 [0], given: 36

If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

26 Jul 2016, 14:16

Another approach:

GMAT loves special triangles and guess what this is a special triangle.

With an hypotenuse of 12, the first thing that comes to my mind is a 30:60:90 triangle (l:l√3:2l),

If this was the case, we would have:
2l= 12
l=6
l√3= 6√3

To test it we simply apply the pythagorean theorem, $$6^{2}+\left( 6\sqrt{3} \right)^{2}\; has\; to\; equal\; 12^{2}\; ->\; \sqrt{36\; +\; 108}\; =\; \sqrt{144}\; ->\; 12\; =\; 12\;$$

$$->\; The\; right\; triangle\; is\; a\; 30:60:90\; triangle.$$

Now that we know the measures of the sides we simply add them.
2p= 12+6*1,7 +6= 12 + 5*2 + 6 = 28.

Intern
Joined: 06 Apr 2013
Posts: 2
Followers: 0

Kudos [?]: 0 [0], given: 3

Re: If a right triangle has area 28 and hypotenuse 12, what is [#permalink]

### Show Tags

02 Oct 2016, 03:16
what is wrong with this approach?

(1/2)*b*h=28
b*h = 56
now 56 can be broken down into following pairs
1, 56
2, 28
4, 14
8, 7
Since two sides of a triangle must be bigger than third side we can use 8,7 so the perimeter is 8+7+12=27
BUT 8^2 + 7^2 does not equal 144.

Where did I get it wrong??
Re: If a right triangle has area 28 and hypotenuse 12, what is   [#permalink] 02 Oct 2016, 03:16

Go to page    1   2    Next  [ 21 posts ]

Similar topics Replies Last post
Similar
Topics:
1 If a right triangle has a hypotenuse that is twice the length 3 29 Apr 2017, 05:36
2 If the hypotenuse of isosceles right triangle ABC has the same length 1 03 Feb 2017, 01:18
8 If a right triangle has a perimeter of 19 and a hypotenuse 19 21 Nov 2016, 11:00
2 A 45° -45° - 90° right triangle has hypotenuse of length h. What is th 5 29 Sep 2015, 19:29
2 If a right triangle has a perimeter of 19 and a hypotenuse that is gre 7 15 Oct 2010, 03:25
Display posts from previous: Sort by

# If a right triangle has area 28 and hypotenuse 12, what is

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.