GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 17 Oct 2019, 21:52

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If abc ≠ 0, then (ab + bc + ac)/(1/a + 1/b + 1/c)

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 58409
If abc ≠ 0, then (ab + bc + ac)/(1/a + 1/b + 1/c)  [#permalink]

### Show Tags

15 Mar 2018, 00:17
00:00

Difficulty:

15% (low)

Question Stats:

89% (00:52) correct 11% (01:30) wrong based on 49 sessions

### HideShow timer Statistics

If abc ≠ 0, then $$\frac{ab + bc + ac}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$

A. a + b + c

B. abc

C. 1/(a + b + c)

D. 1/(ab) + 1/(ac) + 1/(bc)

E. ab + ac + bc

_________________
Senior PS Moderator
Joined: 26 Feb 2016
Posts: 3335
Location: India
GPA: 3.12
If abc ≠ 0, then (ab + bc + ac)/(1/a + 1/b + 1/c)  [#permalink]

### Show Tags

15 Mar 2018, 01:15
Bunuel wrote:
If abc ≠ 0, then $$\frac{ab + bc + ac}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$

A. a + b + c

B. abc

C. 1/(a + b + c)

D. 1/(ab) + 1/(ac) + 1/(bc)

E. ab + ac + bc

The denominator of the expression can be simplified as follows:
$${\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$ = $$\frac{bc + ac + ab}{abc}$$

Therefore, the expression $$\frac{ab + bc + ac}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$ = $$ab + bc + ac*\frac{abc}{bc + ac + ab} = abc$$(Option B)
_________________
You've got what it takes, but it will take everything you've got
examPAL Representative
Joined: 07 Dec 2017
Posts: 1140
Re: If abc ≠ 0, then (ab + bc + ac)/(1/a + 1/b + 1/c)  [#permalink]

### Show Tags

15 Mar 2018, 02:55
1
Bunuel wrote:
If abc ≠ 0, then $$\frac{ab + bc + ac}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$

A. a + b + c

B. abc

C. 1/(a + b + c)

D. 1/(ab) + 1/(ac) + 1/(bc)

E. ab + ac + bc

Since both question and answer have only variables, we'll pick easy numbers.
This can help avoid simplification errors and is an Alternative approach.

Say a=b=c=1. Then our answers are
A. 3
B. 1
C. 1/3
D. 3
E. 3
Since our expression is (1+1+1)/(1+1+1) = 1, then (B) is our answer.
_________________
Re: If abc ≠ 0, then (ab + bc + ac)/(1/a + 1/b + 1/c)   [#permalink] 15 Mar 2018, 02:55
Display posts from previous: Sort by