Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If an integer is to be randomly selected from set M above [#permalink]

Show Tags

12 Jan 2008, 05:29

8

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

65% (00:49) correct
35% (00:44) wrong based on 816 sessions

HideShow timer Statistics

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3}

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

I think D is correct in order to get negative integer either m should be negative and n positive probability of m is negative =5/5=1 probability of n is positive 3/6=1/2 probability of m negative and m positive is 1*1/2=1/2

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

P= No of ways the product of two integers is negative/All possible values = 5*3/5*6 =1/2
_________________

Your attitude determines your altitude Smiling wins more friends than frowning

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

Soln: Total number of possible ways of choosing two integers is = 5 * 6 = 30 ways Now for the product of two integers to be chosen to be negative = they should be of opposite sign. Since set M has all negative numbers, thus we move to set T which has 3 positive numbers. Thus total number of possible ways in which product will be negative is = 5 * 3 = 15

Probability that the product of the two integers will be negative = 15/30 = 1/2 Ans is D

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

Negative prod pairs = 5 x 3 = 15 total pairs possible = 5c1 x 6c1 = 5 x 6 = 30

Probability = 15 / 30 = 1/2
_________________

Cheers! JT........... If u like my post..... payback in Kudos!!

|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice| |For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|

If product has to be negative then m is -ve and n is +ve or m is +ve and n is -ve. But all elements of m are -ve hence we need n to be +ve. 0 has to be excluded as any number multiplied by 0 is 0 and it is neither +ve nor -ve.

Re: M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3} If an [#permalink]

Show Tags

31 Mar 2012, 00:25

Hello,

I got a doubt. Any no. mulitplied by 0 is 0 and 0 is neither +ve nor -ve. Going by this prop of 0, y shld we consider 0 as one of the nos. cause any no +ve or -ve multiplied by 0 is neither positive nor negative ?

I got a doubt. Any no. mulitplied by 0 is 0 and 0 is neither +ve nor -ve. Going by this prop of 0, y shld we consider 0 as one of the nos. cause any no +ve or -ve multiplied by 0 is neither positive nor negative ?

Thnx.

It's not clear what you mean by "why should we consider 0 as one of the numbers"... Anyway:

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3} If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative? A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

In order the product of two multiples to be negative they must have different signs. Since Set M consists of only negative numbers then in order mt to be negative we should select positive number from set T, the probability of that event is 3/6=1/2, (since out of 6 number in the set 3 are positive).

Re: M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3} If an [#permalink]

Show Tags

05 Oct 2012, 22:26

Bunuel wrote:

priyalr wrote:

Hello,

I got a doubt. Any no. mulitplied by 0 is 0 and 0 is neither +ve nor -ve. Going by this prop of 0, y shld we consider 0 as one of the nos. cause any no +ve or -ve multiplied by 0 is neither positive nor negative ?

Thnx.

It's not clear what you mean by "why should we consider 0 as one of the numbers"... Anyway:

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3} If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative? A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

In order the product of two multiples to be negative they must have different signs. Since Set M consists of only negative numbers then in order mt to be negative we should select positive number from set T, the probability of that event is 3/6=1/2, (since out of 6 number in the set 3 are positive).

Answer: D.

Hope it's clear.

Why us 0 not considered as the product of any number will give non negetive

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

04 Jul 2014, 11:03

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

17 Oct 2015, 09:10

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

Total number of cases = 6*6 To get a negative result, we need to multiply numbers of negative signs. Set M has all the 6 negative numbers. Set T has 3 positive numbers, which when multiplied by negative numbers will yield a negative number

Hence we have 6*3 favourable cases.

Probability = 18/36 = 1/2 Option D
_________________

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

21 Oct 2016, 21:16

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

17 Dec 2016, 18:49

TeamGMATIFY wrote:

marcodonzelli wrote:

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3}

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

Total number of cases = 6*6 To get a negative result, we need to multiply numbers of negative signs. Set M has all the 6 negative numbers. Set T has 3 positive numbers, which when multiplied by negative numbers will yield a negative number

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

14 Mar 2017, 20:07

kbulse wrote:

marcodonzelli wrote:

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3}

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

I think D is correct in order to get negative integer either m should be negative and n positive probability of m is negative =5/5=1 probability of n is positive 3/6=1/2 probability of m negative and m positive is 1*1/2=1/2

Set M has all negative numbers, so, the probability of selecting a negative number lies entirely on set M. Set M has 2 negative, 1 zero and 3 positive numbers. Thus, P(negative product) = \(\frac{3}{6}\) = \(\frac{1}{2}\)

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

15 Mar 2017, 10:13

Shruti0805 wrote:

kbulse wrote:

marcodonzelli wrote:

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3}

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

I think D is correct in order to get negative integer either m should be negative and n positive probability of m is negative =5/5=1 probability of n is positive 3/6=1/2 probability of m negative and m positive is 1*1/2=1/2

Set M has all negative numbers, so, the probability of selecting a negative number lies entirely on set M. Set M has 2 negative, 1 zero and 3 positive numbers. Thus, P(negative product) = \(\frac{3}{6}\) = \(\frac{1}{2}\)

This question would get much more tricky if 2/3 was one of the altenatives...

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

In order for the product of the two integers to be negative, one of them has to be negative and the other has to be positive. Since every integer in set M is negative, we must select a positive integer in set T. Thus, the probability of selecting a negative number in set M and then a positive number in set T is:

5/5 x 3/6 = 1/2

Answer: D
_________________

Jeffery Miller Head of GMAT Instruction

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions

Re: If an integer is to be randomly selected from set M above [#permalink]

Show Tags

14 Apr 2017, 13:25

marcodonzelli wrote:

M = {-6, -5, -4, -3, -2} T = {-2, -1, 0, 1, 2, 3}

If an integer is to be randomly selected from set M above and an integer is to be randomly selected from set T above, what is the probability that the product of the two integers will be negative?

A. 0 B. 1/3 C. 2/5 D. 1/2 E. 3/5

Any number picked from the first set will have the same properties (all -ve). A positive number is required from the second set to make the product -ve. 1/2 chance of picking a +ve number from the second set.