Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 02 Oct 2008
Posts: 47

If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
Updated on: 06 Feb 2018, 20:58
Question Stats:
56% (01:29) correct 44% (01:40) wrong based on 302 sessions
HideShow timer Statistics
If b < 1 and 2x  b = 0, which of the following must be true? A. x > 1 B. x < 2 C. x = 2 D. x < 3 E. x > 3
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by tania on 06 Dec 2009, 10:29.
Last edited by Bunuel on 06 Feb 2018, 20:58, edited 2 times in total.
Renamed the topic and edited the question.




Math Expert
Joined: 02 Sep 2009
Posts: 64951

If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
06 Dec 2009, 11:02
If b < 1 and 2x  b = 0, which of the following must be true?A. x > 1 B. x < 2 C. x = 2 D. x < 3 E. x > 3 \(2xb=0\) > \(b=2x\) \(b<1\) > \(2x<\)1 > \(x<\frac{1}{2}\) As \(x<\frac{1}{2}\), x must also be less then 3. Answer: D.
_________________




Manager
Joined: 29 Oct 2009
Posts: 163

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
06 Dec 2009, 11:13
tania wrote: For the following question, it is indicated that option D is correct.
I am not able to understand why ? can anyone explain to me in detail about this one
if b< 1 and 2xb = 0, which of the following must be true?
A.X>1 B.x<2 C.X=2 D.X<3 E.X>3
Regards, Tania The two statements we have been given are : 1) b < 1
2) 2x  b = 0Now notice that all the answer choices ask us something relating to the value of 'x'. This is our cue for rearranging the given information so that we can cross check its validity with the answer choices. Let us write the equation as : x = b/2
Since we know that 'b < 1', we can safely conclude that x must be less that 1/2 or 'x < 0.5'Now let us compare the answer choices to see which one of them must be true with the information we have at hand. (A) x > 1 > We know that x < 0.5 but there is no restriction on its lower limit. Thus it can hold values that are less than 1. Hence this statement is not necessarily true. (B) x < 2 > Again since x can hold any values less than 0.5 (such as 0, 0.5 etc.) this statement is not always true. (C) x = 2 > Since we know that x < 0.5, this statement can never be true. (D) x < 3 > If x < 0.5, then x MUST be less than 3. Therefore this statement MUST be true.(E) x > 3 > Since we know that x < 0.5, this statement can never be true. Answer : D
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders! http://gmatclub.com/forum/compilationoftipsandtrickstodealwithremainders86714.html#p651942
Word Problems Made Easy! 1) Translating the English to Math : http://gmatclub.com/forum/wordproblemsmadeeasy87346.html 2) 'Work' Problems Made Easy : http://gmatclub.com/forum/workwordproblemsmadeeasy87357.html 3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distancespeedtimewordproblemsmadeeasy87481.html



Intern
Joined: 24 Sep 2012
Posts: 26

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
26 Oct 2012, 21:12
Hello All,
X < 1/2 is correct, two answer choices seems to be correct B.x<2 D.X<3 It is not given than X is a postive or negative, integer or fraction. In my opinion, if we consider D it can have possible answer as X = 2 or X = 1, but X has to be less than 1/2. If we consider X < 2 for all values of X, X < 1/2 holds true. Hence my answer was B.
Please feel free to correct me.
REgards, Pritish



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 552
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
26 Oct 2012, 21:57
pritish2301 wrote: Hello All,
X < 1/2 is correct, two answer choices seems to be correct B.x<2 D.X<3 It is not given than X is a postive or negative, integer or fraction. In my opinion, if we consider D it can have possible answer as X = 2 or X = 1, but X has to be less than 1/2. If we consider X < 2 for all values of X, X < 1/2 holds true. Hence my answer was B.
Please feel free to correct me.
REgards, Pritish Hi Pritish, Question says : if b< 1 and 2xb = 0 , which of the following must be true?or in simple words , "if x<1/2 , which of the following must be true?" Option B doesnt hold good for any value of x where, \(2 <=x <1/2\) Consider for example, if x =0, x<1/2 is true but x <2 is not true Hence B can not be the answer. On the other hand, for option D as others have pointed out correctly. Since x <1/2 and 1/2 <3 this implies that x <3 . This would be true for any value of x that satisfies x<1/2. hope it helps.



Intern
Joined: 24 Sep 2012
Posts: 26

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
26 Oct 2012, 22:22
Vips0000 wrote: pritish2301 wrote: Hello All,
X < 1/2 is correct, two answer choices seems to be correct B.x<2 D.X<3 It is not given than X is a postive or negative, integer or fraction. In my opinion, if we consider D it can have possible answer as X = 2 or X = 1, but X has to be less than 1/2. If we consider X < 2 for all values of X, X < 1/2 holds true. Hence my answer was B.
Please feel free to correct me.
REgards, Pritish Hi Pritish, Question says : if b< 1 and 2xb = 0 , which of the following must be true?or in simple words , "if x<1/2 , which of the following must be true?" Option B doesnt hold good for any value of x where, \(2 <=x <1/2\) Consider for example, if x =0, x<1/2 is true but x <2 is not true Hence B can not be the answer. On the other hand, for option D as others have pointed out correctly. Since x <1/2 and 1/2 <3 this implies that x <3 . This would be true for any value of x that satisfies x<1/2. hope it helps. As you mentioned "Consider for example, if x =0, x<1/2 is true but x <2 is not true Hence B can not be the answer." If we chose option B X can never be equal to 0, but if X<3 there is a possibility that X can be 0. Right?



Director
Status: Done with formalities.. and back..
Joined: 15 Sep 2012
Posts: 552
Location: India
Concentration: Strategy, General Management
Schools: Olin  Wash U  Class of 2015
WE: Information Technology (Computer Software)

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
27 Oct 2012, 20:39
pritish2301 wrote: Vips0000 wrote: pritish2301 wrote: Hello All,
X < 1/2 is correct, two answer choices seems to be correct B.x<2 D.X<3 It is not given than X is a postive or negative, integer or fraction. In my opinion, if we consider D it can have possible answer as X = 2 or X = 1, but X has to be less than 1/2. If we consider X < 2 for all values of X, X < 1/2 holds true. Hence my answer was B.
Please feel free to correct me.
REgards, Pritish Hi Pritish, Question says : if b< 1 and 2xb = 0 , which of the following must be true?or in simple words , "if x<1/2 , which of the following must be true?" Option B doesnt hold good for any value of x where, \(2 <=x <1/2\) Consider for example, if x =0, x<1/2 is true but x <2 is not true Hence B can not be the answer. On the other hand, for option D as others have pointed out correctly. Since x <1/2 and 1/2 <3 this implies that x <3 . This would be true for any value of x that satisfies x<1/2. hope it helps. As you mentioned "Consider for example, if x =0, x<1/2 is true but x <2 is not true Hence B can not be the answer." If we chose option B X can never be equal to 0, but if X<3 there is a possibility that X can be 0. Right? Hi Pritish, You are getting confused here  the reasoning follows through question stem first  question says if x<1/2 then which of the following must be true  This means x<1/2 is taken for granted. that is our scope. period. now within this scope we need to find the answer. You dont choose option first and then try to fit in question, but u read option first, define the limit and then consider and choose options. Hope it is clear. Now click kudos



Math Expert
Joined: 02 Sep 2009
Posts: 64951

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
29 Oct 2012, 02:28
pritish2301 wrote: Hello All,
X < 1/2 is correct, two answer choices seems to be correct B.x<2 D.X<3 It is not given than X is a postive or negative, integer or fraction. In my opinion, if we consider D it can have possible answer as X = 2 or X = 1, but X has to be less than 1/2. If we consider X < 2 for all values of X, X < 1/2 holds true. Hence my answer was B.
Please feel free to correct me.
REgards, Pritish Notice that we are asked "which of the following MUST be true?" not COULD be true. Now, we know that x<1/2, thus x<3 is always true. Is x<2 always true? No, if x=0, then x<2, won't be true, therefore this option is not always true. For more on Must/Could be true questions check: search.php?search_id=tag&tag_id=193 (more than 100 questions). Hope it helps.
_________________



Intern
Joined: 24 Oct 2014
Posts: 39
Location: United States
GMAT 1: 710 Q49 V38 GMAT 2: 760 Q48 V47

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
08 Apr 2015, 19:58
So I was getting confused here especially in comparison to this problem
If a^5 ≤ a, which of the following must be true?
I. –1 ≤ a ≤ 0 II. a=0 III. 0 ≤ a ≤ 1
A. None of the above B. I only C. II only D. III only E. I and III only
Here the answer is A, because of the two possible options II and III, III cannot be right because we can think of 2 and find it to satisfy the original condition and 2 doesn't fall in this range. Although II is true, there are other numbers that satisfy the condition as well.
When I looked at this problem, I am like the correct answer should be x <= 1/2. But those choices were there. The answer was totally unexpected X<3, cause I though how about x = 1, 2 or some other value between 1/2 and 3. These values don't satisfy the condition, then how is it true. This is what I have come up with, especially dealing with inequality problems, try to find a number (outside the range given in the answer choice) and see if it satisfies the question stem. If there is none, then you have the right answer. So for eg. looking at x<3, there is no value of x>=3 that would satisfy the Question stem and hence incorrect.
This is quite tricky to wrap your head around. Very tricky! hopefully this will help me in the future.



Manager
Status: I am not a product of my circumstances. I am a product of my decisions
Joined: 20 Jan 2013
Posts: 102
Location: India
Concentration: Operations, General Management
GPA: 3.92
WE: Operations (Energy and Utilities)

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
08 Apr 2015, 21:13
nphatak wrote: So I was getting confused here especially in comparison to this problem
If a^5 ≤ a, which of the following must be true?
I. –1 ≤ a ≤ 0 II. a=0 III. 0 ≤ a ≤ 1
A. None of the above B. I only C. II only D. III only E. I and III only
Here the answer is A, because of the two possible options II and III, III cannot be right because we can think of 2 and find it to satisfy the original condition and 2 doesn't fall in this range. Although II is true, there are other numbers that satisfy the condition as well.
When I looked at this problem, I am like the correct answer should be x <= 1/2. But those choices were there. The answer was totally unexpected X<3, cause I though how about x = 1, 2 or some other value between 1/2 and 3. These values don't satisfy the condition, then how is it true. This is what I have come up with, especially dealing with inequality problems, try to find a number (outside the range given in the answer choice) and see if it satisfies the question stem. If there is none, then you have the right answer. So for eg. looking at x<3, there is no value of x>=3 that would satisfy the Question stem and hence incorrect.
This is quite tricky to wrap your head around. Very tricky! hopefully this will help me in the future. Hey nphatak...Greetings!!! I'm a little confused about the example you gave and specially the answer choices. Is this question a standard GMAT question. I don't think the GMAT tries to trick you this way or is it possible



Senior Manager
Joined: 07 Aug 2011
Posts: 488
Concentration: International Business, Technology

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
09 Apr 2015, 01:58
Ashishmathew01081987 wrote: nphatak wrote: So I was getting confused here especially in comparison to this problem
If a^5 ≤ a, which of the following must be true?
I. –1 ≤ a ≤ 0 II. a=0 III. 0 ≤ a ≤ 1
A. None of the above B. I only C. II only D. III only E. I and III only
Here the answer is A, because of the two possible options II and III, III cannot be right because we can think of 2 and find it to satisfy the original condition and 2 doesn't fall in this range. Although II is true, there are other numbers that satisfy the condition as well.
When I looked at this problem, I am like the correct answer should be x <= 1/2. But those choices were there. The answer was totally unexpected X<3, cause I though how about x = 1, 2 or some other value between 1/2 and 3. These values don't satisfy the condition, then how is it true. This is what I have come up with, especially dealing with inequality problems, try to find a number (outside the range given in the answer choice) and see if it satisfies the question stem. If there is none, then you have the right answer. So for eg. looking at x<3, there is no value of x>=3 that would satisfy the Question stem and hence incorrect.
This is quite tricky to wrap your head around. Very tricky! hopefully this will help me in the future. Hey nphatak...Greetings!!! I'm a little confused about the example you gave and specially the answer choices. Is this question a standard GMAT question. I don't think the GMAT tries to trick you this way or is it possible it's not a tricky question , trust me . whenever you face such inequalities , first thing to do is to draw their roots on number line . \(a^5a <=0\) \(a(a^41) <=0\) root are 1, 0 , 1 now as shown in attached image you can find the regions where this inequality holds . and clearly say that answer is A .
Attachments
gmatclub.jpg [ 24.36 KiB  Viewed 3263 times ]



Intern
Joined: 24 Oct 2014
Posts: 39
Location: United States
GMAT 1: 710 Q49 V38 GMAT 2: 760 Q48 V47

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
09 Apr 2015, 15:49
Well you see its not finding the roots that is the problem. I can find the conditions under which the inequality will hold. Its the answer choices that I said were confusing. The answer choice a=0 is true, the inequality will be 0. And when you are asked what must be true, you are like..yeah at a = 0 this is true. But the question is not if its true at one value, the question is which answer choice covers all the possible values. Not one! I am probably not able to explain what the confusion is.
If a^5 ≤ a, which of the following must be true?
I. –1 ≤ a ≤ 0 II. a=0 III. 0 ≤ a ≤ 1
A. None of the above B. I only C. II only D. III only E. I and III only



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 10629
Location: Pune, India

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
09 Apr 2015, 20:46
nphatak wrote: Well you see its not finding the roots that is the problem. I can find the conditions under which the inequality will hold. Its the answer choices that I said were confusing. The answer choice a=0 is true, the inequality will be 0. And when you are asked what must be true, you are like..yeah at a = 0 this is true. But the question is not if its true at one value, the question is which answer choice covers all the possible values. Not one! I am probably not able to explain what the confusion is.
If a^5 ≤ a, which of the following must be true?
I. –1 ≤ a ≤ 0 II. a=0 III. 0 ≤ a ≤ 1
A. None of the above B. I only C. II only D. III only E. I and III only So when you solve the inequality, you get a <= 1 OR 0 <= a <= 1. a is either less than 1 or it is between 0 and 1. Let's see what each statement says. I. –1 ≤ a ≤ 0 This says that a must be between 1 and 0. True or False? False II. a=0 This says that a must be 0. True or False? False. a is either less than 1 or it is between 0 and 1. III. 0 ≤ a ≤ 1 This says that a must lie between 0 and 1. True or False? False. a is either less than 1 OR it is between 0 and 1. Now, think if there were another statement IV. a < 2 This says a must be less than 2. True or False? True. a is either less than 1 OR it is between 0 and 1. In any case, it will always be less than 2. By the way, it is not a trick. It is based on logic and can easily be tested on GMAT.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Intern
Joined: 24 Oct 2014
Posts: 39
Location: United States
GMAT 1: 710 Q49 V38 GMAT 2: 760 Q48 V47

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
10 Apr 2015, 06:40
VeritasPrepKarishma wrote: nphatak wrote: Well you see its not finding the roots that is the problem. I can find the conditions under which the inequality will hold. Its the answer choices that I said were confusing. The answer choice a=0 is true, the inequality will be 0. And when you are asked what must be true, you are like..yeah at a = 0 this is true. But the question is not if its true at one value, the question is which answer choice covers all the possible values. Not one! I am probably not able to explain what the confusion is.
If a^5 ≤ a, which of the following must be true?
I. –1 ≤ a ≤ 0 II. a=0 III. 0 ≤ a ≤ 1
A. None of the above B. I only C. II only D. III only E. I and III only So when you solve the inequality, you get a <= 1 OR 0 <= a <= 1. a is either less than 1 or it is between 0 and 1. Let's see what each statement says. I. –1 ≤ a ≤ 0 This says that a must be between 1 and 0. True or False? False II. a=0 This says that a must be 0. True or False? False. a is either less than 1 or it is between 0 and 1. III. 0 ≤ a ≤ 1 This says that a must lie between 0 and 1. True or False? False. a is either less than 1 OR it is between 0 and 1. Now, think if there were another statement IV. a < 2 This says a must be less than 2. True or False? True. a is either less than 1 OR it is between 0 and 1. In any case, it will always be less than 2. By the way, it is not a trick. It is based on logic and can easily be tested on GMAT. Thanks a lot Karishma! So the correct answer choice should cover all the possible values of a, right? The way I was interpreting this question was, which of this must be true = any subset of all the possible values has to be true and I marked that answer. Its just a failure in my understanding these kind of questions.



Target Test Prep Representative
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2799

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
26 Feb 2018, 10:20
tania wrote: If b < 1 and 2x  b = 0, which of the following must be true?
A. x > 1 B. x < 2 C. x = 2 D. x < 3 E. x > 3 Manipulating the equation we have 2x = b, thus: 2x < 1 x < 1/2 Thus, x must be less than 3. Note that the correct answer x < 3 may be confusing. Here’s the logic: we determined algebraically that x must be less than 1/2. Thus, some possible values for x are 1/4 , 0, ⅔, 5, and so on. Note that each of these values is, indeed, less than 3 (which is answer choice D). In fact, any value of x that satisfies x < 1/2 will ALSO satisfy x < 3. Hence, answer choice D is correct. Answer: D
_________________
5star rated online GMAT quant self study course
See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews



NonHuman User
Joined: 09 Sep 2013
Posts: 15376

Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
Show Tags
01 Jul 2020, 03:44
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: If b < 1 and 2x  b = 0, which of the following must be true?
[#permalink]
01 Jul 2020, 03:44




