GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 25 Feb 2020, 01:56

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

GMAT Club Legend
Joined: 11 Sep 2015
Posts: 4350
Location: Canada
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

08 May 2017, 06:06
Top Contributor
35
00:00

Difficulty:

95% (hard)

Question Stats:

38% (02:36) correct 62% (02:15) wrong based on 264 sessions

### HideShow timer Statistics

If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

_________________
Test confidently with gmatprepnow.com
##### Most Helpful Expert Reply
GMAT Club Legend
Joined: 11 Sep 2015
Posts: 4350
Location: Canada
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

10 May 2017, 13:07
12
Top Contributor
8
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

We have several differences of squares hiding in the expression 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²

1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100² = 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²
= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100)
= (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
= (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
= (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive.

So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J

So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J.
We get: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (-1)(K + J)
= -K - J

Answer:

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
##### Most Helpful Community Reply
Director
Joined: 05 Mar 2015
Posts: 958
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

08 May 2017, 06:53
7
1
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

simply put j= 2+4
k= 1+3

then 1^2- 2^2 + 3^2 - 4^2 = 1-4+9-16= -10

also j= 2+4= 6 && k = 1+3 =4
j^2= 36 && k^2 =16

just plug in values to option to get -10 as our answer

only option C does

Ans C
##### General Discussion
Math Expert
Joined: 02 Aug 2009
Posts: 8254
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

08 May 2017, 07:25
7
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

Hi,

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$ .....
Here take all inpairs $$1^2-2^2$$, $$3^2-4^2$$, and so on till $$99^2-100^2$$..
1^2-2^2=(1-2)(1+2)=-1(1+2)=-1-2...
3^2-4^2=(3-4)(3+4)=-1(3+4)=-3-4..
So the equation becomes -1-2-3-4-......-99-100=-(1+2+3+4+...+99+100)= -[(2+4+6....+98+100)+(1+3+5+...+97+99)]=-[(j)+(k)]=-j-k
C
_________________
Director
Joined: 14 Nov 2014
Posts: 583
Location: India
GMAT 1: 700 Q50 V34
GPA: 3.76
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

08 May 2017, 09:52
1
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

We can break the problem into a^2 - b ^2 = 1^2 - 2^2 = (1+2) (1-2) = -3
similarly other pair will give = -7 ,next pair will give = -11
final pair will give -199
Now the question stem is reduced to below seq:
-3 -7-11.....-199

-3 = -(1+2)
-7 = -(3+4)
-11 = -(5+6)

-(1+3+5....)-(2+4+6...)
-(j)-(k)
-(j+k)..Ans
Senior SC Moderator
Joined: 14 Nov 2016
Posts: 1343
Location: Malaysia
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

11 May 2017, 21:52
GMATPrepNow wrote:
If $$J = 2 + 4 + 6 + 8 + . . . 98 + 100$$, and $$K = 1 + 3 + 5 + 7 + . . . + 97 + 99$$, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

From Matt (Veritas Prep)

We could also cheat with a pattern:

$$n² - (n + 1)² => n² - (n² + 2n + 1) => -(2n + 1) => -(n + n + 1)$$ for any value of n.

Since we've got 1² - 2² + 3² - 4² ..., we've really got -(1 + 2) -(3 + 4) .... -(99 + 100), or -1 -2 -3 -4 .... - 99 - 100, or -(1 + 2 + 3 + ... + 100), or -(K + J), or -K - J.
_________________
"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Advanced Search : https://gmatclub.com/forum/advanced-search/
Director
Affiliations: IIT Dhanbad
Joined: 13 Mar 2017
Posts: 722
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE: Engineering (Energy and Utilities)
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

11 May 2017, 22:28
1
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

There can be many solutions possible. But we will go with the basic solution, though it might be lengthy one to understand the concepts..
We can use tricks to solve problem as suggested by other members in exam.. Learning tricks is also very important.

J = 2+4+6+8+....+98+100
K = 1+3+5+7+....++97+99

$$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$
= (1-2)(1+2) + (3-4) (3+4)+ (5-6)(5+6) +.......+ (97-98)(97+98) +(99-100)(99+100)
= -1[(1+2)+(3+4)(5+6) +......+ (97+98)+(99+100)]
= -1[ (1+3+5+...+97+99) + (2+4+6+...+98+100)]
= -1(K+J)
= -K-J

Anwer : C
Intern
Joined: 28 Mar 2013
Posts: 12
GMAT 1: 680 Q49 V32
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

11 May 2017, 22:39
1
Answer is C .
We can pair any 2 consecutive term and apply (a+b) (a-b) in stead of a^2 - b ^2.

Sent from my Moto G (4) using GMAT Club Forum mobile app
Intern
Joined: 05 Mar 2018
Posts: 3
Location: India
Concentration: Entrepreneurship, Strategy
GPA: 2.7
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

30 Apr 2018, 20:01
GMATPrepNow wrote:
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

We have several differences of squares hiding in the expression 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²

1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100² = 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²
= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100)
= [color=red](-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
= (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
= (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive.

So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J

So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J.
We get: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (-1)(K + J)
= -K - J

Answer:

Cheers,
Brent

Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write
(1-2)(1+2) = (-1)(1 + 2)
(3-4)(3+4) =(-1)(3+4)... and so on...?
GMAT Club Legend
Joined: 11 Sep 2015
Posts: 4350
Location: Canada
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

01 May 2018, 07:16
2
Top Contributor
MayurAgrawal wrote:
GMATPrepNow wrote:
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

We have several differences of squares hiding in the expression 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²

1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100² = 1² - 2² + 3² - 4² + 5² - 6² + . . . . . + 97² - 98² + 99² - 100²
= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100)
= (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
= (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
= (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

IMPORTANT: within the sum, 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100, we have all of the ODD integers from 1 to 99 inclusive, and we have all of the EVEN integers from 2 to 100 inclusive.

So, we can say that 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 = K + J

So, we're replace 1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100 with K + J.
We get: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100) = (-1)(K + J)
= -K - J

Answer:

Cheers,
Brent

Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write
(1-2)(1+2) = (-1)(1 + 2)
(3-4)(3+4) =(-1)(3+4)... and so on...?

Sure thing.
Let's take (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100) and break it into its individual parts:
(1 - 2)(1 + 2) = (-1)(1 + 2) because 1 - 2 = -1
(3 - 4)(3 + 4) = (-1)(3 + 4) because 3 - 4 = -1
(5 - 6)(5 + 6) = (-1)(5 + 6) because 5 - 6 = -1
.
.
.

(97 - 98)(97 + 98) = (-1)(97 + 98) because 97 - 98 = -1
(99 - 100)(99 + 100) = (-1)(99 + 100) because 99 - 100 = -1

So, we get: (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
From here, we can factor out the -1 to get: (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
Which is the same as: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

Does that help?

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Intern
Joined: 05 Mar 2018
Posts: 3
Location: India
Concentration: Entrepreneurship, Strategy
GPA: 2.7
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

01 May 2018, 17:00
Quote:
Quote:
Hi Brent, I did't understand the step 3. Can you please elaborate, how did you write
(1-2)(1+2) = (-1)(1 + 2)
(3-4)(3+4) =(-1)(3+4)... and so on...?

Sure thing.
Let's take (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + . . . . . + (97 - 98)(97 + 98) + (99 - 100)(99 + 100) and break it into its individual parts:
(1 - 2)(1 + 2) = (-1)(1 + 2) because 1 - 2 = -1
(3 - 4)(3 + 4) = (-1)(3 + 4) because 3 - 4 = -1
(5 - 6)(5 + 6) = (-1)(5 + 6) because 5 - 6 = -1
.
.
.

(97 - 98)(97 + 98) = (-1)(97 + 98) because 97 - 98 = -1
(99 - 100)(99 + 100) = (-1)(99 + 100) because 99 - 100 = -1

So, we get: (-1)(1 + 2) + (-1)(3 + 4) + (-1)(5 + 6) + . . . . . + (-1)(97 + 98) + (-1)(99 + 100)
From here, we can factor out the -1 to get: (-1)[(1 + 2) + (3 + 4) + (5 + 6) + . . . . . + (97 + 98) + (99 + 100)]
Which is the same as: (-1)(1 + 2 + 3 + 4 + . . . . . 97 + 98 + 99 + 100)

Does that help?

Cheers,
Brent

Silly Me. I totally missed subtraction. Thank you very much for clearing doubt.
Manager
Joined: 18 Jul 2015
Posts: 109
GMAT 1: 530 Q43 V20
WE: Analyst (Consumer Products)
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

24 Dec 2019, 06:37
GMATPrepNow wrote:
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J
D) K² - J²
E) (-J - K)²

*kudos for all correct solutions

Brent's solution in this thread above is amazing and is the way to go. I am sharing here the approach for working backwards from the answer choices.

1. Take a sample from the two series (highlighted above)
$$J = 2 + 4 + 6 + 8 = 20$$
$$K = 1 + 3 + 5 + 7 = 16$$

Now, $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + 7^2 - 8^2 = -36$$

2. Plug $$J = 20$$, $$K = 16$$ in the choices to check which one yields $$-36$$
As you will realize that only C i.e. $$-K - J$$ works
$$-K - J = -20-16 = -36$$

Ans. C
_________________
Cheers. Wishing Luck to Every GMAT Aspirant!
Senior Manager
Joined: 12 Dec 2015
Posts: 483
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +  [#permalink]

### Show Tags

24 Dec 2019, 06:59
If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . + 97 + 99, then $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2 =$$

A) J² - K²
B) -50(J² - K²)
C) -K - J --> CORRECT: $$1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + . . . . . + 97^2 - 98^2 + 99^2 - 100^2$$ = $$(1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + . . . . . + (97^2 - 98^2) + (99^2 - 100^2)$$ = (1+2)(1-2)+ (3+4)(3-4)+(5+6)(5-6)+.....+(97+98)(97-98)+(99+100)(99-100) = (-1)*( 1+2+3+4+5+6+.....+97+98+99+100)=-1(J+K)=-J-K
D) K² - J²
E) (-J - K)²
Re: If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +   [#permalink] 24 Dec 2019, 06:59
Display posts from previous: Sort by

# If J = 2 + 4 + 6 + 8 + . . . 98 + 100, and K = 1 + 3 + 5 + 7 + . . . +

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne