Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If k is a positive integer and n = k(k + 7k), is n divisible [#permalink]

Show Tags

16 Jun 2016, 14:09

sandeepmanocha wrote:

Jem2905 wrote:

If k is a positive integer and n = k(k + 7), is n divisible by 6?

(1) k is odd.

(2) When k is divided by 3, the remainder is 2.

Divisibility by 6 means must be divisible by 3x2 (Prime Factors of 6)

1) k is Odd ==> k(k+7) = Odd(Odd+Odd) = Even This will give me at least one factor of 2.. but nothing about factor of 3

[Insufficient]

2) k Divided by 3 ==> Remainder = 2 Now Possible values could be 2,5,8,11 -- Alternatively Even and Odd So if k=2,8,... Then I am getting One factor of 2 and when I add these to 7 I get Multiple of 3,

Similarly when I I choose k=5,11.. Odd Number with remainder of 2 and I add them to 7 I get Even Multiple of 3 i.e. Multiple of 6

This is happening because, Numbers with Remainders of 2 when added to 7, which leaves remainder of 1 when divided by 3, makes the Sum Divisible by 3 [Sufficient] <--- Answer is B

Agreed with Sandeep, if K is divisble by 3 and the remainder is 2, then (k+7) would divide evenly by 3 as 7/3 has a remainder of 1. So 7/3=2*3+1 & k/3=a*3+2 -> (k+7)/3=(a*3+2)+(2*3+1)=3a+3+2*3=3(a+1+2) ->this is divisble by 3 Now, if k is odd k(k+7) is even, and if k is even k(k+7) is even, which means it is divisible by 2. Therefore it is divisible by both 2 and 3.

Re: If k is a positive integer and n = k(k + 7k), is n divisible [#permalink]

Show Tags

29 Jan 2017, 16:34

1) First statement is insufficient. Smart numbers: k=1: 1*8=8, 8/6=1.666; k=3: 3*10=30, 30/6=5 2) To find out if n is divisible by 6 we need to find if n is divisible by 2 and divisible by 3. If k is even (e.g. 8, 14, 20...) then it is divisible by 2. If k is odd (5, 11, 17...), then k(odd)+7(odd)=even and it is divisible by 2. Since k/3 has a remainder of 2, and 7/3 has a remainder of 1, the remainders add up to another 3, thus k+7 is always divisible by 3.

Statement 2 alone is sufficient, while statement 1 alone is not sufficient.

Re: If k is a positive integer and n = k(k + 7k), is n divisible [#permalink]

Show Tags

02 Jul 2017, 10:15

1

This post received KUDOS

If n=K(K+7), then- 1) k is odd => odd * (odd + Even) = Odd * Odd. We can not say it is multiple of 6 or not. Insufficient. 2) k = 3m +2. So, n=K(K+7) => n= (3m+2)(3m+9)= 3(3m+2)(m+3) => multiple of 3. If m is odd, m+3 is even. Hence , multiple of 2 and 3. So, it is multiple of 6. Suff. If m is even, 3m+2 is even. Hence , multiple of 2 and 3 again. So,multiple of 6. Suff. Ans- B is

Re: If k is a positive integer and n = k(k + 7k), is n divisible [#permalink]

Show Tags

26 Sep 2017, 00:30

Got it in 5 minutes . either way, St 1: n = k(k+7)means; plug in numbers. if k is odd; then odd (odd + odd) --> odd. if k is even; then even (even + odd) --> even. Not suff

St 2: k/3 = Q + 2 5/3 = 1 + 2 8/3 = 2+ 2 So the lowest number completely divisible would be 5 (numerator: 3+2 and deno : 3+2). So 5/5 would be 1 Plugging K back to 5 --> 5(12) = 60 which is divisible by 6. Thus B is sufficient.

Re: If k is a positive integer and n = k(k + 7k), is n divisible [#permalink]

Show Tags

05 Oct 2017, 07:12

VeritasPrepKarishma wrote:

Jem2905 wrote:

If k is a positive integer and n = k(k + 7), is n divisible by 6?

(1) k is odd.

(2) When k is divided by 3, the remainder is 2.

Given: n = k(k + 7) Question: Is n divisible by 6?

(1) k is odd. If k = 1, n = 8 - Not divisible by 6 If k = 6, n is divisible by 6 Not sufficient

(2) When k is divided by 3, the remainder is 2. k = (3b+2) n = (3b+2)(3b+2 + 7) = (3b + 2)(3b + 9) = 3*(3b + 2)(b + 3) For n to be divisible by 6, it must be divisible by both 2 and 3. We see that it is divisible by 3. Let's see if it is divisible by 2 too i.e. if it is even. b can be odd or even in this expression. If it is odd, (b+3) will become even because (Odd + Odd = Even). If it is even, (3b+2) will become even because (Even + Even = Even). So in either case, n will be even. So n will be divisible by 3 as well as 2 i.e. it will be divisible by 6. Sufficient alone.

Answer (B)

I suppose what I have marked in Red is a typo since the statement says k is odd.
_________________

"The fool didn't know it was impossible, so he did it."

Re: If k is a positive integer and n = k(k + 7k), is n divisible [#permalink]

Show Tags

21 Oct 2017, 09:05

Hence n will not be divisible by 6. So Sufficient.

IMO, B[/quote]

Hi, I'm trying to understand this question too. The question I saw had n=K(K+7), not k+ 7K as written in the question above. Can anyone explain this q with the change please?

Thanks![/quote]

If k is a positive integer and n = k(k + 7), is n divisible by 6?

(1) k is odd. If \(k = 1\), then \(n = k(k + 7) = 8\) and n is NOT divisible by 6 but if \(k = 3\), then \(n = k(k + 7) = 30\) and n IS divisible by 6. Not sufficient.

(2) When k is divided by 3, the remainder is 2 --> \(k = 3x + 2\) --> \(n = k(k + 7) = (3x + 2)(3x + 9)=9x^2+33 x+18=3(3x^2+11x)+18\). Notice that \(3x^2+11x\) is even no matter whether x is even or odd, thus \(n=3(3x^2+11x)+18=3*even+(a \ multiple \ of \ 6)=(a \ multiple \ of \ 6)+(a \ multiple \ of \ 6)=(a \ multiple \ of \ 6)\). Sufficient.

Answer: B.

Hope it's clear.[/quote]

(1) Since k=odd, putting k = 3,5,7 we get n=30,60,98. 30&60 divisible but 98 is not divisible by 6. So INSUFFICIENT.

(2) says, k=3a+2, putting value of k in n = k(k+7), we get

We’ve given one of our favorite features a boost! You can now manage your profile photo, or avatar , right on WordPress.com. This avatar, powered by a service...

Sometimes it’s the extra touches that make all the difference; on your website, that’s the photos and video that give your content life. You asked for streamlined access...

A lot has been written recently about the big five technology giants (Microsoft, Google, Amazon, Apple, and Facebook) that dominate the technology sector. There are fears about the...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...