Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack
GMAT Club

 It is currently 23 Mar 2017, 01:29

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If M is the least common multiple of 90,196, and 300, which

Author Message
TAGS:

### Hide Tags

Manager
Joined: 10 Oct 2005
Posts: 113
Location: Hollywood
Followers: 0

Kudos [?]: 69 [0], given: 0

If M is the least common multiple of 90,196, and 300, which [#permalink]

### Show Tags

27 Nov 2005, 07:43
10
This post was
BOOKMARKED
00:00

Difficulty:

65% (hard)

Question Stats:

63% (02:39) correct 37% (02:13) wrong based on 568 sessions

### HideShow timer Statistics

If M is the least common multiple of 90,196, and 300, which of the following is NOT a factor of M?

A. 600
B. 700
C. 900
D. 2,100
E. 4,900
[Reveal] Spoiler: OA

_________________

The GMAT, too tough to be denied.
Beat the tough questions...

Last edited by Bunuel on 07 Feb 2014, 10:21, edited 1 time in total.
Renamed the topic, edited the question and added the OA.
Director
Joined: 14 Sep 2005
Posts: 992
Location: South Korea
Followers: 2

Kudos [?]: 165 [1] , given: 0

### Show Tags

27 Nov 2005, 08:04
1
KUDOS
2
This post was
BOOKMARKED
IF M is the least common multiple of 90,196 and 300, which of the following is NOT a factor of M?

A- 600
B- 700
C- 900
D- 2100
E- 4900

90 = 2 * 3 * 3 * 5
196 = 2 * 2 * 7 * 7
300 = 2 * 2 * 3 * 5 * 5
-----------------------------------------
LCM = 2 * 2 * 3 * 3 * 5 * 5 * 7 * 7
(TWO 2, TWO 3, TWO 5, TWO 7)

600 = 2 * 2 * 2 * 3 * 5 * 5
700 = 2 * 2 * 5 * 5 * 7
900 = 2 * 2 * 3 * 3 * 5 * 5
2100 = 2 * 2 * 3 * 5 * 5 * 7
4900 = 2 * 2 * 5 * 5 * 7 * 7
_________________

Auge um Auge, Zahn um Zahn !

Director
Joined: 24 Oct 2005
Posts: 659
Location: London
Followers: 1

Kudos [?]: 16 [0], given: 0

### Show Tags

27 Nov 2005, 08:20
Yes, got the same ans.
M = 2*2*3*3*5*5*7*7

600 = 2*2*2*5*5*3 -- one 2 is left out here. So that is the answer.
Director
Joined: 14 Jan 2007
Posts: 776
Followers: 2

Kudos [?]: 141 [0], given: 0

### Show Tags

25 Mar 2007, 08:04
first calculate the LCM of the given numbers

90 = 2*3*3*5
196=2*2*7*7
300=2*2*3*5*5

LCM = 2*2*3*3*5*5*7*7 this is the number M.

now check each number whether a factor of M.

Director
Joined: 30 Nov 2006
Posts: 591
Location: Kuwait
Followers: 14

Kudos [?]: 283 [0], given: 0

### Show Tags

25 Mar 2007, 11:18
1
This post was
BOOKMARKED
If M is the least common multiple of 90, 196, and 300, which of the following is NOT a factor of M?

Rule of Thumb: whenever you see Least Common Multiple (LCM), think of factors and preferebly prime factorization. Every non-prime integer can be factored into only prime numbers. So lets start prime factoring:
[P.S. if you need help in prime factoring tell us]
For easy start, whenever you see an even integer, start with the prime factor 2

90: 3 x 30 --> 3 x 3 x 10 --> 3 x 3 x 2 x 5
196: 2 x 98 --> 2 x 2 x 49 --> 2 x 2 x 7 x 7
300: 2 x 150 --> 2 x 2 x 75 --> 2 x 2 x 3 x 25 --> 2 x 2 x 3 x 5 x 5

LCM of the three number must contain all prime factors of each and every one of the three numbers : 90, 196, and 300

LCM : 2 x 2 x 3 x 3 x 5 x 5 x 7 x 7 = M

A factor of M must contain one or more, but limited to the available ones, of the prime factors of LCM [M]

A. 600 : 2 x 3 x 2 x 5 x 2 x 5 [ uses three 2's --> Not a Factor ]
B. 700 : 2 x 5 x 2 x 5 x 7 [ a factor of M ]
C. 900 : 3 x 3 x 2 x 2 x 5 x 5 [ a factor of M ]
D. 2,100 : 7 x 3 x 2 x 5 x 2 x 5 [ you tell me ]
E. 4,900 : 7 x 7 x 2 x 5 x 2 x 5 [ yes indeedy ]

It is A
Manager
Joined: 12 Feb 2007
Posts: 167
Followers: 1

Kudos [?]: 1 [0], given: 0

### Show Tags

25 Mar 2007, 12:33
What do you guys do in order to figure out the prime factorization. do you do the tree diagram? I'd like to know the fastest way.
Senior Manager
Joined: 11 Feb 2007
Posts: 352
Followers: 1

Kudos [?]: 126 [0], given: 0

### Show Tags

25 Mar 2007, 22:38
Thank you vshaunak and Mishari for your clear explanation!!

So this is how to approach this kind of problem.

I should learn more of these approaches so that I don't have to plug in numbers for number property probs!
Manager
Joined: 14 Jan 2006
Posts: 92
Schools: HKUST
Followers: 1

Kudos [?]: 29 [1] , given: 0

If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

01 Oct 2008, 01:53
1
KUDOS
2
This post was
BOOKMARKED
If M is the least common multiple of 90, 196, and 300, which of the following is NOT a factor of M?

A. 600
B. 700
C. 900
D. 2,100
E. 4,900
Manager
Joined: 30 Sep 2008
Posts: 111
Followers: 1

Kudos [?]: 19 [1] , given: 0

Re: If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

01 Oct 2008, 02:28
1
KUDOS
90 = 3^2 x 2 x 5
196 = 7^2 x 2^2
300 = 3 x 5^2 x 2^2

so the least common = 7^2 x 2^2 x 3^2 x 5^2 = 7^2 x 3^2 x 100 = (7x3)^2 x 100

A. 6 = 3 x 2 <--not
B. 7 <-ok
C. 9 = 3^2 <- ok
D. 21 = 7 x 3 <- ok
E. 49 = 7^2 <-ok

SVP
Joined: 17 Jun 2008
Posts: 1568
Followers: 11

Kudos [?]: 258 [0], given: 0

Re: If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

01 Oct 2008, 13:19
lylya4 wrote:
90 = 3^2 x 2 x 5
196 = 7^2 x 2^2
300 = 3 x 5^2 x 2^2

so the least common = 7^2 x 2^2 x 3^2 x 5^2 = 7^2 x 3^2 x 100 = (7x3)^2 x 100

A. 6 = 3 x 2 <--not
B. 7 <-ok
C. 9 = 3^2 <- ok
D. 21 = 7 x 3 <- ok
E. 49 = 7^2 <-ok

I think, you missed one 2 in the least common multiple. It will be 7^2 * 5^2 * 3^2 * 2^3.

To me, all the answer choices are factors of this least common multiple. Is there any typo in the question?
Intern
Joined: 29 Sep 2008
Posts: 46
Followers: 0

Kudos [?]: 8 [0], given: 0

Re: If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

01 Oct 2008, 15:47
scthakur wrote:
lylya4 wrote:
90 = 3^2 x 2 x 5
196 = 7^2 x 2^2
300 = 3 x 5^2 x 2^2

so the least common = 7^2 x 2^2 x 3^2 x 5^2 = 7^2 x 3^2 x 100 = (7x3)^2 x 100

A. 6 = 3 x 2 <--not
B. 7 <-ok
C. 9 = 3^2 <- ok
D. 21 = 7 x 3 <- ok
E. 49 = 7^2 <-ok

I think, you missed one 2 in the least common multiple. It will be 7^2 * 5^2 * 3^2 * 2^3.

To me, all the answer choices are factors of this least common multiple. Is there any typo in the question?

A.

LCM contains 2 2's whereas 600 = 25 * 3 * 8. thus cannot be a factor.
Intern
Joined: 04 May 2011
Posts: 11
Followers: 0

Kudos [?]: 3 [0], given: 11

Re: A concept math, pls help [#permalink]

### Show Tags

24 Aug 2011, 02:40
1
This post was
BOOKMARKED
The key to this problem is breaking down the numbers into its prime factors. After that its a piece of cake!

90 -> 3*3*5*2
196 -> 2*2*7*7
300 -> 3*2*2*5*5

M(LCM) = multiply all the factors (pick the highest power of the common factor)

M(LCM) = $$2^2*3^2*5^2*7^2$$

The question asks which is NOT A FACTOR of M:
Only A(600) which has an additional factor 2 is not a factor of M
600 -> $$2^3*3*5^2$$ => it has an additional factor of 2 which is not present in M(only 2 factors of '2' is present here)
Intern
Joined: 09 Feb 2011
Posts: 12
Followers: 0

Kudos [?]: 5 [0], given: 2

Re: A concept math, pls help [#permalink]

### Show Tags

24 Aug 2011, 10:14
Just because I've into solving multiple problems today.

Here's how I think of it: you essentially need to pull out the primes one by one from 900, 196 and 300 respectively.
The easiest way for me to do this is pull out tens first (which consists of 2*5, both primes)
so
900 - 2 * 5 * 2 * 5 , leaving a 9 which is 3 *3 so you have 2, 2, 3, 3, 5, 5
300 - 2 *5 * 2 * 5, leaving 3 so 2, 2, 3, 5, 5
196 is trickier. Up until today I didn't know it was the square of 14 but once you know that:
196 = 2 * 7 * 2 * 7 so 2, 2, 7, 7
then make a list like srivats212 said but including the the number as much as it appears in any given number
so 2, 2, 3, 3, 5, 5, 7, 7

Now find the number that requires any prime number to pop up more than it does in the bolded list.

600 = 2 * 5 * 2 * 5 * 2 * 3, so it needs 3 2's and you only have 2 twos in the bolded list, so isn't a factor of M.

I think if you want to do these things fast it's best to memorize all the squares up to 20. Which I haven't bothered up until now either, just did this in excel.
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
These numbers alone or multiples of these numbers seem to pop up a lot I suppose in other types of problems too. But for multiple/factor problems all you need to do is figure out the prime factors of the original number. For 324, the square root is 18. Then prime factors of 324 are 2 * 9 * 2 * 9. But memorization of the squares is essential for pattern recognition (and hence completion of problems in 2 minutes or less) I'm starting to realize.
Manager
Joined: 04 Apr 2010
Posts: 162
Followers: 1

Kudos [?]: 183 [0], given: 31

Re: A concept math, pls help [#permalink]

### Show Tags

24 Aug 2011, 11:31
A should the answer. We can get if by combined factorization. 600 is the only # that we can't get from combined factorization to calculate LCM.
_________________

Consider me giving KUDOS, if you find my post helpful.
If at first you don't succeed, you're running about average. ~Anonymous

Intern
Joined: 21 Aug 2011
Posts: 23
Followers: 0

Kudos [?]: 12 [0], given: 0

Re: A concept math, pls help [#permalink]

### Show Tags

24 Aug 2011, 18:16
Thank you so much, your expl. is very detailed and professional. I like yours.

I forgot this basic concept.

srivats212 wrote:
The key to this problem is breaking down the numbers into its prime factors. After that its a piece of cake!

90 -> 3*3*5*2
196 -> 2*2*7*7
300 -> 3*2*2*5*5

M(LCM) = multiply all the factors (pick the highest power of the common factor)

M(LCM) = $$2^2*3^2*5^2*7^2$$

The question asks which is NOT A FACTOR of M:
Only A(600) which has an additional factor 2 is not a factor of M
600 -> $$2^3*3*5^2$$ => it has an additional factor of 2 which is not present in M(only 2 factors of '2' is present here)
Intern
Joined: 01 Aug 2006
Posts: 35
Followers: 0

Kudos [?]: 31 [0], given: 0

Re: IF M is the least common multiple of 90,196 and 300, which [#permalink]

### Show Tags

07 Feb 2014, 10:15
90 = 2 * 3^2 * 5
196 = 2^2 * 7^2
300 = 2^2 * 3 * 5^2
LCM contains the HIGHEST power of EVERY number present in prime factorization.
M = LCM = 2^2 * 3^2 *5^2 * 7^2.

Look @ answer options. A: 600 = 2^3 * 3 * 5^2 ->Cannot be a factor because of 2^3.
Senior Manager
Joined: 29 Oct 2013
Posts: 297
Concentration: Finance
GMAT 1: 750 Q V46
GPA: 3.7
WE: Corporate Finance (Retail Banking)
Followers: 15

Kudos [?]: 396 [0], given: 197

Re: If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

03 Jun 2014, 07:53
Hi Bunuel, Pls could you update the official answer here? Also I do it using systematically calculating LCM and prime factorizing each answer choice. But it takes long time. Is there possibly a shortcut? Thanks
_________________

My journey V46 and 750 -> http://gmatclub.com/forum/my-journey-to-46-on-verbal-750overall-171722.html#p1367876

Math Expert
Joined: 02 Sep 2009
Posts: 37551
Followers: 7391

Kudos [?]: 99214 [0], given: 11009

Re: If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

03 Jun 2014, 08:17
MensaNumber wrote:
Hi Bunuel, Pls could you update the official answer here? Also I do it using systematically calculating LCM and prime factorizing each answer choice. But it takes long time. Is there possibly a shortcut? Thanks

Merging similar topics.

No, finding the LCM and then checking the answer choices is pretty much it.
_________________
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1858
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Followers: 50

Kudos [?]: 2047 [0], given: 193

Re: If M is the least common multiple of 90,196, and 300, which [#permalink]

### Show Tags

03 Jun 2014, 23:18
90 = 2 * 3 * 3 * 5

196 = 2 * 2 * 7 * 7

300 = 2 * 2 * 3 * 5 * 5

Only 2 is common in all the 3 factorization

So, LCM =$$\frac{90 * 196 * 300}{8} = 45 * 49 * 300$$(No need of further calculation)

Testing Option I > 600. It is NOT the factor

_________________

Kindly press "+1 Kudos" to appreciate

Current Student
Joined: 04 Jul 2014
Posts: 291
Location: India
GMAT 1: 640 Q47 V31
GMAT 2: 640 Q44 V34
GMAT 3: 710 Q49 V37
GPA: 3.58
WE: Analyst (Accounting)
Followers: 19

Kudos [?]: 241 [1] , given: 403

Re: If M is the least common multiple of 90, 196, and 300, which [#permalink]

### Show Tags

17 Nov 2014, 06:28
1
KUDOS
Here is @lyla4's answer in a manner understandable to late bloomers like me

LCM is the product of the greatest power of each prime that appears in any of the numbers.
90 = 3^2 x 2 x 5
196 = 7^2 x 2^2
300 = 3 x 5^2 x 2^2

So the least common multiple is = 7^2 x 2^2 x 3^2 x 5^2 = (7x3)^2 x 100
Divide each answer choice and the LCM by 100
Therefore LCM = (7x3)^2

Now we are looking for the choice in which, LCM/choice is not an integer.

A. 6 = 3 x 2 <--not
B. 7 <-ok
C. 9 = 3^2 <- ok
D. 21 = 7 x 3 <- ok
E. 49 = 7^2 <-ok

_________________

Cheers!!

JA
If you like my post, let me know. Give me a kudos!

Re: If M is the least common multiple of 90, 196, and 300, which   [#permalink] 17 Nov 2014, 06:28

Go to page    1   2    Next  [ 24 posts ]

Similar topics Replies Last post
Similar
Topics:
If the least common multiple of m and n is 24, 1 05 Mar 2017, 07:20
Which of the following is the least common multiple of 136 and 204? 3 01 Dec 2016, 01:59
10 Which of the following cannot be the least common multiple 8 06 Feb 2014, 03:24
9 The least common multiple of positive integer m and 3-digit 7 23 Nov 2013, 02:42
22 If the least common multiple of positive integer m and n is 13 13 Jun 2008, 00:09
Display posts from previous: Sort by